Corresponds to sections 1.5, 2.1, and 2.2 of textbook	we interpret the wave function	-What is the wave function, and how	classical physics does not explain them	-What are the results and why	experiment	-how to describe Stern-Gerlach	What I expect you to learn.	What T aspect you to loopp.	with the introduction of the wave function	-begin discussion of quantum mechanics	tar regarding the origins of quantum theory	Coole of the locture. finich and neces what we have loonned as	Quantum Theory	LECTURE 7: The Stern-Gerlach Experiment and Recap of Origins of $$ (U	

With the Stern-Gerlac This is called "space qu	From what we have lear angular momentum will I what are the allowed vc	ی ر With classical physics, dipole moment should b	IFB is wot	IF B is UNIFO dipole will exp	
experiment we'll see that Lz is quantised. tisation"	d from quantum physics, we know that the quantised. BUT, there are no constaints (yet) on es of the projection of the angular momentum	values of the z projection of the magnetic allowed.	siven by:	ichice was wet force Mz +	Œ

behaved as particles with momentum.	Compton's scattering experiment gave clear evidence that em radiation	The idea of light as a particle took more time to mature.	INSI dent radiation + electron	Compton Scattering:	with energy: Ezzh	 Einstein's solution: introduced the concept of "quantum of light" 	frequency of light but not on intensity	-kinetic energy of electrons depends on	-threshold frequency for electron emission	• The problem: classical physics cannot explain the observations e.g.:	surface	Photoelectric effect: electrons are emitted when light shines on a polished	RECAP of CHAPTER 1:

How do we deal with these particle-wave hybrids from a mathematical and physical standpoint?	We know how to deal with particles and we know how to deal with waves (and you are learning about it in the waves course).	MV This hypothesis was confirmed with the Davisson-Germer and other experiments.	Louis de Broglie's hypothesis extended this matter-wave duality to ordinary particles: $\lambda = h$	Various experiments and observations forced people to accept that light also has a particle nature	The concept of light as electromagnetic waves was established prior to the onset of the quantum revolution	RECAP of CHAPTER 1::

We'll call $2(x,y,z,t)$ the "wave Function" We'll call $2(x,y,z,t)$ the "wave Function"	$P(x, y, z, T) \propto \Psi(x, y, z, T) ^{2}$	this wave function must represent the probablility amplitude for finding an electron at a given point in space	this would imply that the probablility of finding the electron is equal to the square of some wave function	For electrons, the pattern we see represents the probablility distribution for a single electron to be detected at a given point on the screen.	In Young's double slit experiment, the interference pattern represents the intensity of light on the screen (equal to the sum of the amplitudes squared)

