UNIVERSITY OF TORONTO

Faculty of Arts and Science

DECEMBER 2006 PRACTICE EXAM

PHY256H1F

Exam Questions:

1. (25 points) The Stern-Gerlach Experiment

- a) (4 points) Describe the setup of the Stern-Gerlach Experiment.
- b) (3 points) Plot the result of this experiment (include axis labels).
- c) (4 points) Give two important features of quantum physics that emerge from the result of this experiment.
- d) (7 points) Find the eigenvalues and eigenstates of the spin operator \hat{S} of an electron in the direction of a unit vector \hat{n}, where \hat{n} lies in the " $x z$ " plane.
- e) (7 points) I use a Stern-Gerlach apparatus to select a "spin up" electron with respect to the z direction i.e. the eigenvalue of \hat{S}_{z} that I obtain is $+\frac{\hbar}{2}$. If I measure the spin of the electron in the direction of the unit vector \hat{n} given above, what values can I obtain and with what probabilities if the angle θ of \hat{n} with respect to the z axis is: i) $\theta=0$ degrees, ii) $\theta=90$ degrees, iii) $\theta=60$ degrees

2. (25 points) Postulates of Quantum Physics

- for a particle in an infinite potential well, the expansion postulate states that the particle's wave function can be expanded in terms of eigenfunctions:

$$
\psi(x)=\sum_{n=1}^{\infty} A_{n} \psi_{n}(x)
$$

Here, the Schrodinger equation can be expressed as $\hat{H} \psi_{n}(x)=$ $E_{n} \psi_{n}(x)$.

- a) (5 points) Give the expression for the expectation value of \hat{H} in terms of E_{n} and A_{n}
- b) (5 points) What does $\left|A_{n}\right|^{2}$ represent physically?
- A quantum mechanics postulate states that the time evolution of the state vector is given by the time-dependent Schrodinger equation. The state vector at a time t can be expressed as: $\left|\psi(t)>=\exp \left(\frac{-i}{\hbar} \hat{H} t\right)\right| \psi(0)>$. Suppose a physical system is in the state $\mid \psi(0)>$: $\left(\begin{array}{c}3 / 5 \\ 0 \\ 4 / 5\end{array}\right)$ and the Hamiltonian can be expressed as:
$\hat{H}=\left(\begin{array}{rrr}3 \epsilon & 0 & 0 \\ 0 & 0 & 5 \epsilon \\ 0 & 5 \epsilon & 0\end{array}\right)$.
- c) (8 points) For such a system, find what are the energies that can be measured and their respective probabilities.
- d) (7 points) Using the eigenvalues of \hat{H}, write the column vector that represents $\mid \psi(t)>$.

3. (15 points) A particle of mass m is fixed at one end of a rigid rod of negligible mass and length R. The other end of the rod is attached at the origin such that the particle can rotate in the xy plane.

- Write down the system's total energy in terms of its angular momentum L.
- Write down the system's time-independent Schrodinger equation.
- Give the energy levels of the system.

4. (20 points) One-Dimensional Problems: a particle is known to be localized in the left half of a one-dimensional infinite potential well with walls at $x= \pm \frac{a}{2}$. The wave function is given by $\psi(x)=\sqrt{\frac{2}{a}}$ for $-\frac{a}{2}<x<0$ and $\psi(x)=0$ for $0<x<\frac{a}{2}$.

- a) (8 points) Will the particle remain localized on the left-hand side of the well at later times? why?
- b) (12 points) Calculate the probability that an energy measurement will yield the ground state energy $(\mathrm{n}=1)$. Remember that the eigenfunctions for a similar infinite well with sides at $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{a}$ are given by $\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)$.

5. (30 points) Orbital Angular Momentum

- a) (5 points) Write the expression for the angular momentum vector in classical mechanics in terms of the position vector and the momentum vector.
- b) (5 points) In the position representation, write the expression for the angular momentum operator in quantum mechanics in terms of the position operator and the momentum operator.
- Consider a system which is the state: $\left|\psi>=\frac{1}{\sqrt{7}}\right| 1,-1>+A \mid 1,0>$ $\left.+\sqrt{\frac{2}{7}} \right\rvert\, 1,1>$, where A is a real positive constant. The kets on the right-hand side are the eigenvectors $\mid l, m>$.
- c) (5 points) Calculate A such that $\mid \psi>$ is normalized.
- d) (5 points) What is the probability associated with a measurement that gives " \hbar " for the z component of the angular momentum?
- e) (5 points) Calculate the expectation values for $\hat{L}_{x}, \hat{L}_{z}, \hat{L}^{2}$ if the system is in the state $|\psi\rangle$ given at the beginning of the question.
- f) (5 points) Calculate $\Delta \hat{L_{x}}$ if the system is in the state $|\psi\rangle$ given at the beginning of the question.

Formulas and Constants:

$\Delta \hat{A}=\sqrt{\left.<\hat{A}^{2}>-<\hat{A}\right\rangle^{2}}$
Infinite well eigenfunctions: $\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)$
$e^{i \theta}=\cos (\theta)+i \sin (\theta)$
$\sin (\theta)=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$
$\cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2}$
$\hat{L}_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \hat{L}_{y}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0\end{array}\right), \hat{L}_{z}=\hbar\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$
$\hat{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \hat{S}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

