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Introduction to Quantum Mechanics: Problem Set 1

1.6 Using Planck’s spectral distribution law (1.13) for ρ (λ, T ), prove that
the total energy density ρTot = aT 4, where a = 8π5k4/15h3c3.

Solution:From Planck’s spectral distribution (1.13):

ρ (λ, T ) =
8πhc

λ5

1

exp (hc/λkT )− 1
(1)

We can obtain the total energy density as a function of temperature
by integrating this expression over all possible wavelengths.

ρTot (T ) =

∫ ∞

0

ρ(λ, T )dλ

=

∫ ∞

0

8πhc

λ5

1

exp (hc/λkT )− 1
dλ

In order to evaluate this integral we need to make a change of variables.
Define x = hc/λkT . Now λ = hc/xkT and

dλ =
−hc

x2kT
dx

Substituting into the integral we obtain

ρTot (T ) = 8πhc

∫ 0

∞
(hc/xkT )−5 1

ex − 1

( −hc

kTx2

)
dx

= −8πhc

(
kT

hc

)5 (−hc

kT

) ∫ ∞

0

x3

ex − 1
dx

= 8πhc

(
k4T 4

h3c3

) ∫ ∞

0

x3

ex − 1
dx

Note that the bounds of the integral are inverted by the change of
variables since when λ goes to ∞, x goes to zero and when λ goes to
zero x goes to ∞.

We are given in the problem that
∫ ∞

0

x3

ex − 1
dx =

π4

15
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So we have

ρTot (T ) = 8πhc

(
k4T 4

h3c3

)
π4

15

=
8π5k4

15h3c3
T 4

As desired.

1.7 The photoelectric work function W for lithium is 2.3 eV.

(a) Find the threshold frequency νt and the corresponding threshold
wavelength λt

(b) If ultraviolet light of wavelength λ = 3000Å is incident on a
lithium surface calculate the maximum kinetic energy of the pho-
toelectrons and the value of the stopping potential V0.

Solution:

(a) Einstein’s application of conservation of energy to the photoelec-
tric effect appears as equation 1.28 in the text,

1

2
mv2

max = hν −W

By definition the threshold frequency is frequency at which elec-
trons begin to be emitted from the metal, but with zero kinetic
energy. It is given by equation 1.29.

νt =
W

h

=
(2.3eV ) (1.602× 10−19J/eV )

6.626−34J · s
= 5.6× 1014Hz

Since this is light we’re talking about λ = c/ν where c is the speed
of light, so

λt =
(
3× 108m/s

)
/
(
5.56× 1014Hz

)

= 5.4× 10−7m

So λt = 540nm and νt = 560THz. This puts the threshold fre-
quency in the green band of the visible spectrum which is a com-
pletely reasonable result.

2



(b) The kinetic energy at a given frequency is given by equation 1.28.
We are given the photon wavelength and can convert to frequency
with ν = c/λ.

ν =
3× 108m/s

3000× 10−10m

= 1015Hz

Plugging this into 1.28:

1

2
mv2

max = hν −W

=
(
6.626× 10−34J · s) (

1015Hz
)− (2.3eV )

(
1.602× 10−19J/eV

)

= 2.94× 10−19J

2.94× 10−19J/1.602× 10−19J/eV = 1.84eV , so the electrons have
1.84 eV of kinetic energy. Again, this is the right energy scale for
interactions with photons in the visible spectrum. If each electron
is acquiring 1.84 eV then the stopping potential is V0 = Ek/e =
1.84V .

1.16 Consider the Compton scattering of a photon of wavelength λ0 by a
free electron moving with a momentum of magnitude P in the same
direction as that of the incident photon.

(a) Show that in this case the Compton equation (1.42) becomes

∆λ = 2λ0
(p0 + P ) c

E − Pc
sin2

(
θ

2

)

where p0 = h/λ0 is the magnitude of the incident photon momen-

tum, θ is the photon scattering angle and E = (m2c4 + P 2c2)
1/2

.

(b) What is the maximum value of the electron momentum after the
collision? Compare with the case P=0 considered in the text.

(c) Show that if the free electron initially moves with a momentum of
magnitute P in a direction opposite to that of the incident photon,
the Compton shift becomes

∆λ = 2λ0
(p0 − P ) c

E + Pc
sin2

(
θ

2

)

Solution
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(a) The Compton equation is a consequence of conservation of mo-
mentum and energy in the collision between a photon and an
electron.

The electron moves in the same direction as the photon. Define
this direction to be the x direction. Before the collision the photon
momentum is given by the de Broglie relation p0 = h/λ0 and the
electron momentum by P . We’ll define the magnitude of the pho-
ton momentum after the collision to be h/λf and the magnitude
of electron momentum after the collision to be Pf . Conservation
of momentum in the x direction gives us

p0 + P =
h

λf

cos θ + Pf cos φ

Where θ is the direction of the photon relative to the x-axis after
the collision and φ is the direction of the electron.

In the y direction conservation of momentum gives us

0 =
h

λf

sin θ + Pf sin φ

Energy is also conserved. Planck’s formula tells us that the photon
energy is Eγ = hf , and since we’re in free space where the speed
of light is c = λf , Eγ = hc/λ. The electron’s energy is given by

the relativistic energy formula E = (m2c4 + P 2c2)
1/2

. Thus

hc

λ0

+ E =
hc

λf

+
√

m2c4 + P 2
f c2

I’ve been careful to leave in those terms that appear in the desired
expression like E for the initial electron energy. The goal now
is to eliminate those terms that don’t appear in that expression,
namely φ and Pf . I have three equations, so by clever substitution
I should be able to eliminate these two variables and be left with
an equation in the remaining variables.

I’ll start by eliminating φ. I notice that φ only appears in the mo-
mentum equations and that I have one for cos φ and one for sin φ.
If I square these and add them together I’ll get 1, independent of
what φ is. Let’s try.

Pf cos φ = (p0 + P )− h

λf

cos θ

Pf sin φ = − h

λf

sin θ
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Squaring, I get

P 2
f cos2 φ =

(
p0 + P − h

λf

cos θ

)2

= p2
0 + P 2 +

h2

λ2
f

cos2 θ + 2Pp0 − 2Ph

λf

cos θ − 2p0h

λf

cos θ

P 2
f sin2 θ =

h2

λ2
f

sin2 θ

And adding them together,

P 2
f = p2

0 + P 2 +
h2

λ2
f

cos2 θ + 2Pp0 − 2p0h

λf

cos θ − 2Ph

λf

cos θ +
h2

λ2
f

sin2 θ

= p2
0 + P 2 +

h2

λ2
f

+ 2Pp0 − 2 (p0 + P ) h

λf

cos θ

So we’ve eliminated φ; let’s try to get rid of Pf . We’ll use the
conservation of energy equation for this. Pf is under the square-
root, so we’ll isolate the square root and square both sides of the
equation:
√

m2c4 + P 2
f c2 = hc

(
1

λ0

− 1

λf

)
+ E

m2c4 + P 2
f c2 = h2c2

(
1

λ0

− 1

λf

)2

+ E2 + 2Ehc

(
1

λ0

− 1

λf

)

P 2
f =

h2

λ2
0

+
h2

λ2
f

− 2
h2

λ0λf

+
E2

c2
+ 2

Eh

λ0c
− 2

Eh

λfc
−m2c2

Now we can expand out the E2/c2 term. E2 = m2c4 + P 2c2, so
E2/c2 = m2c2 + P 2. This cancels the −m2c2.

P 2
f =

h2

λ2
0

+
h2

λ2
f

− 2
h2

λ0λf

+ P 2 + 2
Eh

λ0c
− 2

Eh

λfc

=
h2

λ2
0

+
h2

λ2
f

− 2
h2

λ0λf

+ P 2 + 2
Eh

c

λf − λ0

λfλ0

=
h2

λ2
0

+
h2

λ2
f

− 2
h2

λ0λf

+ P 2 + 2
Eh

c

∆λ

λfλ0

Combining this with the conservation of momentum result gives

p2
0 + P 2 +

h2

λ2
f

+ 2Pp0 − 2 (p0 + P ) h

λf

cos θ =
h2

λ2
0

+
h2

λ2
f

− 2
h2

λ0λf

+ P 2 + 2
Eh

c

∆λ

λfλ0

p2
0 + P 2 +

h2

λ2
f

+ 2Pp0 − 2 (p0 + P ) h

λf

cos θ = p2
0 +

h2

λ2
f

− 2
h2

λ0λf

+ P 2 + 2
Eh

c

∆λ

λfλ0
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Canceling terms gives

2Pp0 − 2 (p0 + P ) h

λf

cos θ = −2
h2

λ0λf

+ 2
Eh

c

∆λ

λfλ0

If we now multiply both sides by λfλ0/2h we obtain

Pλf − (p0 + P ) λ0 cos θ = −h +
E

c
∆λ

We can now apply the trig identity cos θ = 1− 2 sin2 θ
2

to obtain

Pλf − (p0 + P ) λ0

(
1− 2 sin2 θ

2

)
= −h +

E

c
∆λ

P (λf − λ0)− h

λ0

λ0 + 2λ0 (p0 + P ) sin2 θ

2
= −h +

E

c
∆λ

P∆λ− h + 2λ0 (p0 + P ) sin2 θ

2
= −h +

E

c
∆λ

∆λ (E/c− P ) = 2λ0 (p0 + P ) sin2 θ

2

∆λ =
2λ0 (p0 + P ) sin2 θ

2

E/c− P

∆λ =
2λ0 (p0 + P ) c sin2 θ

2

E − Pc

Which (finally) is the desired result.

(b) To find the maximum value of the electron momentum we need to
go back to the equation derived from conservation of momentum:

P 2
f = p2

0 + P 2 +
h2

λ2
f

+ 2Pp0 − 2 (p0 + P ) h

λf

cos θ

By inspection we can see that this is maximal when θ = π since
then the last term will make a maximal positive contribution and
all the other terms are positive. This makes sense since if the
photon is back-scattered then the electron will get a push in the
forward direction by conservation of momentum.

When P = 0 the maximum momentum transfer also occurs when
θ = π, which is qualitatively the same.

(c) Nowhere in the solution to part (a) did we require that P be a
positive number. Consequently our derivation works equally well
whether the electron and the photon move in the same direction
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or opposite directions. We don’t need to go through the whole
derivation again with negative P , we merely need to substitute
P → (−P ) into the solution to (a)

∆λ =
2λ0 (p0 + (−P )) c sin2 θ

2

E − (−P )c

=
2λ0 (p0 − P ) c sin2 θ

2

E + Pc

As desired.

1.29 The spacing of the Bragg planes in a NaCl crystal is d = 2.82Å. Cal-
culate the angular position of the first- and second-order diffraction
maximum for 100 eV electrons incident on the crystal surface at the
Bragg angle θB.

Solution: To find when the Bragg condition for constructive interfer-
ence is met we must first calculate the wavelength of the electron. The
electron rest mass-energy is 511 keV, over 5000 times bigger than the
given kinetic energy of 100 eV. We are therefore justified in using the
non-relativistic approximation that Ek = p2/2m. That being the case,

p =
√

2mEk

p =
√

2(9.11× 10−31kg)(100eV )(1.602× 10−19J/eV )

p = 5.24× 10−24kg ·m/s

Dividing this momentum by the electron mass gives a velocity of 5.9×
106 m/s. This is 2% of the speed of light, which is consistent with our
choice to use the non-relativistic approximation.

To find the wavelength we use the de Broglie relation

λ =
h

p
(2)

=
6.626× 10−34J · s

5.24× 10−24kg ·m/s
(3)

= 1.26× 10−10m (4)

So the electron wavelength is 1.26 Å. This seems reasonable since atoms
are on the order of 1Å in size. Now using this wavelength we can sub-
stitute into the Bragg formula. We want to use the version containing
the Bragg angle θB, namely

2d sin θB = nλ

For the first order diffraction we use n = 1 and obtain

2(2.82Å) sin θB = 1
(
1.26Å

)

sin θB = 0.223

θB = 12.9o
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The second-order diffraction can be obtained by setting n = 2

2(2.82Å) sin θB = 2
(
1.26Å

)

sin θB = 0.447

θB = 26.5o

So the angular positions of the first and second order peaks will be
12.9o and 26.5o respectively.
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