
PHYS256F October 19, 2006

Introduction to Quantum Mechanics: Problem Set 2

1 (Textbook 2.1) Consider the wave packet ψ (x) ≡ Ψ (x, t = 0) given by

ψ (x) = Ceip0x/h̄e−|x|/(2∆x)

where C is a normalisation constant.

(a) Normalise ψ (x) to unity.

(b) Obtain the corresponding momentum space wave function φ (px)
and verify that it is normalised to unity according to (2.44)

(c) Suggest a reasonable definition of the width ∆px of the momentum
distribution an show that ∆x∆px ≥ h̄.

Solution:

(a) To normalize the wavefunction we have to find C such that

∫ ∞

−∞
|ψ (x)|2 dx = 1

Plugging in the definition for ψ (x) we get

∫ ∞

−∞

∣∣Ceip0x/h̄e−|x|/(2∆x)
∣∣2 dx

∫ ∞

−∞
|C|2

∣∣eip0x/h̄
∣∣2 ∣∣e−|x|/(2∆x)

∣∣2 dx

The magnitude squared of the imaginary exponential is 1 and
the magnitude squared of the real exponential can be obtained
by simply squaring it (it is its own complex conjugate), so the
integral is now

|C|2
∫ ∞

−∞
e−|x|/(∆x)dx

We can get rid of the absolute value sign by splitting the integral
into two parts, one with x running over all negative numbers where
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|x| = −x and the other with x running over all positive numbers
where |x| = x

|C|2
[∫ 0

−∞
ex/(∆x)dx +

∫ ∞

0

e−x/(∆x)dx

]

= |C|2
[
∆xex/∆x

∣∣∣∣
x=0

x=−∞
+ (−∆x) e−x/∆x

∣∣∣∣
x=∞

x=0

]

= |C|2 [∆x (1− 0)−∆x (0− 1)]

= 2∆x |C|2

And if that is equal to 1 then |C|2 must equal 1/ (2∆x). So |C| =
1/
√

2∆x. The phase of C is not specified, but by convention it is
usually taken to be 0 so that C is a real number. So C = 1/

√
2∆x.

(b) φ (px) is the Fourier Transform of ψ (x), and can be obtained from
it using equation (2.41) in the book.

φ (px) =
1√
2πh̄

∫ ∞

−∞
e−ipxx/h̄ψ (x) dx

Before calculating the Fourier Transform it’s always a good idea
to see what we can predict about it generally by inspection and
application of the Fourier Transform properties. One property is
the shift property which I didn’t cover in tutorial but you can read
about at

http://en.wikipedia.org/wiki/Fourier transform#Properties

Multiplication by the phasor eip0x/h̄ shifts the center of the Fourier
transform from px = 0 to px = p0.

Also

< [ψ(x)] =
1√
2∆x

e−|x|/(2∆x) cos p0x

= [ψ(x)] =
1√
2∆x

e−|x|/(2∆x) sin p0x

The real part of ψ(x) is even and the imaginary part is odd, so we
expect the Fourier transform to be purely real.

Let’s explicitly evaluate the integral and we’ll look for these prop-
erties in the result. We have
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φ (px) =
1√
2πh̄

∫ ∞

−∞
e−ipxx/h̄ 1√

2∆x
eip0x/h̄e−|x|/(2∆x)dx

=
1

2
√

πh̄∆x

∫ 0

−∞
e[h̄/(2∆x)+i(−px+p0)]x/h̄dx +

1

2
√

πh̄∆x

∫ ∞

0

e[−h̄/(2∆x)+i(−px+p0)]x/h̄dx

=
1

2
√

πh̄∆x

[
h̄

h̄/ (2∆x) + i(−px + p0)
e[h̄/(2∆x)+i(−px+p0)]x/h̄

∣∣∣∣
0

−∞
+

h̄

−h̄/ (2∆x) + i(−px + p0)
e[−h̄/(2∆x)+i(−px+p0)]x/h̄

∣∣∣∣
∞

0

]

=
1

2

√
h̄

π∆x

[
1

h̄/ (2∆x) + i(−px + p0)
(1− 0) +

1

−h̄/ (2∆x) + i(−px + p0)
(0− 1)

]

=
1

2

√
h̄

π∆x

[
1

h̄/ (2∆x) + i(−px + p0)
− 1

−h̄/ (2∆x) + i(−px + p0)

]

=
1

2

√
h̄

π∆x

[−h̄/ (2∆x) + i(−px + p0)− (h̄/ (2∆x)− i(−px + p0))

(h̄/ (2∆x) + i(−px + p0)) (−h̄/ (2∆x) + i(−px + p0))

]

=
1

2

√
h̄

π∆x

[ −h̄/∆x

−h̄2/ (4∆x2)− (−px + p0)2

]

=
1

2

√
h̄3

∆x3π

[
1

h̄2/ (4∆x2) + (−px + p0)2

]

So the Fourier transform is real, and furthermore its real part is sym-
metric about the centre at px as can be seen in figure on the next
page.

Now to verify that it is normalized. If it is still normalized then
∫ ∞

−∞
|φ (px)|2 dpx = 1

Let’s see if it’s true.∫ ∞

−∞
|φ (px)|2 dpx =

∫ ∞

−∞

∣∣∣∣∣∣
1

2

√
h̄3

∆x3π

[
1

h̄2/ (4∆x2) + (−px + p0)2

]∣∣∣∣∣∣

2

dpx

Since the function is real, |φ (px)|2 = φ (px)
2.

h̄3

4∆x3π

∫ ∞

−∞

1(
h̄2/ (4∆x2) + (−px + p0)2

)2 dpx
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We can start by making a change of variables u = −px+p0, du = −dpx.
u goes to −∞ when px goes to ∞ and to ∞ when px goes to −∞.

h̄3

4∆x3π

∫ −∞

∞

1

(1/ (4∆x2) + u2)2 (−du)

=
h̄3

4∆x3π

∫ ∞

−∞

1

(1/ (4∆x2) + u2)2 du

If you don’t recognize this integral you can look it up in an integral
table like the one at http://www.sosmath.com/tables/tables.html or
use Mathematica or Maple to evaluate it. In the tables we find that

∫
1

(a2 + x2)2 dx =
x

2a2 (x2 + a2)
+

1

a3
tan−1 x

a

To put our integral into this form we can substitute x = u and a =
h̄/ (2∆x) to obtain

h̄3

4∆x3π

[
u

2 (1/ (4∆x2))
(
u2 + h̄2/ (4∆x2)

) +
4∆x3

h̄3 tan−1

(
2∆xu

h̄

)]u=∞

u=−∞

The first term goes asymptotically to zero as 1/u as u goes to ±∞, so
it can be neglected. Using tan−1±∞ = ±π/2,

h̄3

4∆x3π

[
4∆x3

h̄3

(π

2
−

(
−π

2

))]

= 1

So the Fourier transform is indeed normalized.

(c) There are many different definitions of the ‘width’ of a function. Most
of them give the distance from the center of the function where the
function falls of to some fraction of its central value. One of the most
common such measures is the full-width at half-maximum or FWHM
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that measures the full width of the function when it has fallen to half
of its peak value. Since φ (px) can in general be complex we should
specify that we mean the magnitude |φ (px)| falls to half its central
value although for this particular function φ is real, so |φ (px)| = φ (px).
The function is peaked at px = p0 where

φ (p0) =
1

2

√
h̄3

∆x3π

[
1

h̄2/ (4∆x2) + (−px + p0)2

]

=
1

2

√
h̄3

∆x3π

[
1

h̄2/ (4∆x2)

]

= 2

√
∆x

h̄π

To find the FWHM we find for what value of px the function is equal

to
√

∆x
h̄π

1

2

√
h̄3

∆x3π

[
1

h̄2/ (4∆x2) + (−px + p0)2

]
=

√
∆x

h̄π

1

2

√
h̄3

∆x3π

[
4∆x2

h̄2

1 + 4∆x2

h̄2 (−px + p0)2

]
=

√
∆x

h̄π

1

1 + 4∆x2

h̄2 (−px + p0)2
=

1

2

in order to get this we require that

4∆x2

h̄2 (−px + p0)
2 = 1

(−px + p0)
2 =

h̄2

4∆x2

px = p0 ± h̄

2∆x

So we can define (∆px)FWHM ≡ h̄
∆x

and (∆px)FWHM ∆x = h̄, as ex-
pected from the uncertainty principle.

Other reasonable definitions of the width are equally valid. As long as
they are reasonable ∆x∆px will be within an order of magnitude of h̄.

2 (Textbook 2.13) A beam of monoenergetic electrons is used to raise
atoms to an excited state in a Franck-Hertz experiment. If this excited
state has a lifetime of 10−9 s, calculate the spread in energy of the
inelastically scattered electrons.
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Solution: The time-energy uncertainty relation ∆E∆t ≥ h̄ gives a
lower bound on the uncertainty in energy that will show up experimen-
tally as a spread in the energy ∆E ≥ h̄/∆t. Using the excited state
lifetime as the time uncertainty,

∆E ≥ h̄

∆t

∆E ≥ 1.055× 10−34J · s
10−9s

∆E ≥ 1.055× 10−25J

∆E ≥ 3.4× 10−7eV

So the spread is very small, less than a millionth of an electron volt,
but this is still a realistic number.

3 Nuclei, typically of size 10−14 m, emit electrons with energies in the
range 1-10 MeV. Show that electrons of these energies can’t be con-
tained in the nucleus. (Hint: Use the uncertainty relation)

Solution: Assume that the electrons are free. This is a good assump-
tion since 1-10 MeV is far more energy than the binding energy holding
the electron to the atom. In this case we can obtain a range of mo-
menta corresponding to this range of energies. Since the energy range
is not small compared to the electron rest mass-energy of 511 KeV we
need to use the relativistic expressions for energy.

E =
√

m2c4 + p2c2

E2 = m2c4 + p2c2

p =
√

E2/c2 −m2c2

When E = 1 MeV,

p1 =

√
[(106eV )(1.602× 10−19J/eV )]2

[3× 108m/s]2
− [9.11× 10−31kg]2 [3× 108m/s]2

p = 4.59× 10−22kg ·m/s

When E = 10 MeV,

p10 =

√
[(107eV )(1.602× 10−19J/eV )]2

[3× 108m/s]2
− [9.11× 10−31kg]2 [3× 108m/s]2

p = 5.33× 10−21kg ·m/s

Subtracting these two gives us a range for the uncertainty in the mo-
mentum.

∆p = p10 − p1

= 4.87× 10−21kg ·m/s
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The Heisenberg uncertainty principle gives us a lower bound on the
position uncertainty of the electrons corresponding to this degree of
momentum uncertainty.

∆x ≥ h̄

∆p

∆x ≥ 1.055× 10−34J · s
4.87× 10−21kg ·m/s

∆x ≥ 2.2× 10−14m

4 Consider the following wave function:

ψ (x) = Nxe−αx x > 0

= 0 x < 0

(a) Find N .

(b) Where does the probability |ψ (x)| peak?

(c) What is the probability of finding the particle between 0 and 1/α?

(d) Find φ (p).

Solution:

(a) Normalization proceeds as in the first question. We require that
∫ ∞

−∞
|ψ (x)|2 dx = 1

Plugging in the definition for ψ (x) and reducing the range of the
integral to be 0 to ∞ since ψ(x) = 0 for x < 0 we get

∫ ∞

0

∣∣Nxe−αx
∣∣2 dx

= |N |2
∫ ∞

0

x2e−2αxdx

Making a change of variables to u = 2αx, x = u/(2α), dx =
du/(2α), u →∞ when x →∞ and u → 0 when x → 0,

∫ ∞

0

|Nxeαx|2 dx

= |N |2
∫ ∞

0

u2

4α2
e−u du

2α

=
|N |2
8α3

∫ ∞

0

u2e−udu
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With α=1

This integral can be looked up in a table, solved with Mathematica
or Maple or evaluated with integration by parts. We’ll do the
latter. Setting t = u2, dt = 2udu and ds = e−udu, s = −e−u,

∫ ∞

0

u2e−udu

= −u2e−u
∣∣u=∞
u=0

+ 2

∫ ∞

0

ue−u

= 2

∫ ∞

0

ue−udu

Setting t = u, dt = du and ds = e−udu, s = −e−u,

∫ ∞

0

u2e−2udu

= 2

[
ue−u

∣∣u=∞
u=0

+

∫ ∞

0

e−udu

]

= 2
[−e−u

∣∣∞
0

]

= 2

So

1 =
|N |2
8α3

∫ ∞

0

u2e−udu

1 =
|N |2
4α3

Which means that |N | = 2α3/2. Again we’ll follow convention and
keep the phase as zero so that N is real and say N = 2α3/2. So
finally

ψ(x) = 2α3/2xe−αx

(b) We can find extrema in the probability by setting the derivative
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of |ψ(x)|2 with respect to x to zero and solving for x.

d|ψ(x)|2
dx

=
d

dx
4α3x2e−2αx

= 4α3
(
2xe−2αx + x2(−2α)e−2αx

)

Setting this equal to zero,

4α3
(
2xe−2αx − 2x2αe−2αx

)
= 0

8α3xe−2αx(1− xα) = 0

x =

{
1

α
, 0

}

If we plot the function (see figure), we see that the solution at
x = 1

α
is the maximum.

(c) The probability of finding the particle between zero and 1/α is
given by the integral of the absolute square of the wavefunction
over that integral. Note that we expect the probability to just be
a number so there shouldn’t be any α’s in the answer. We’ll use
the same change of variables as in part (a).

P (x ∈ {0, 1/α}) = 4α3

∫ 1/α

0

x2e−2αxdx

= 4α3

∫ 2

0

u2

4α2
e−u du

2α

=
1

2

∫ 2

0

u2e−udu

This is indeed just a number, so we’re doing well. Integrating by
parts with t = u2, dt = 2udu, ds = e−udu, s = −e−u

P (x ∈ {0, 1/α}) =
1

2

[
−u2e−u

∣∣u=2

u=0
+ 2

∫ 2

0

ue−udu

]

=
1

2

[
−4e−2 + 2

∫ 2

0

ue−udu

]

Integrating by parts again, with t = u, dt = du, ds = e−udu,
s = −e−u,

P (x ∈ {0, 1/α}) = −2e−2 +−ue−u
∣∣u=2

u=0
+

∫ 2

0

e−udu

= −2e−2 − 2e−2 +
[−e−u

]u=2

u=0

= −4e−2 + (−e−2 + 1)

= 1− 5e−2

≈ 0.323
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So the probability of finding the particle between x = 0 and x = α
is 32%.

(d) To find φ(p) we do the same thing we did in question 1. Again,
before starting we’ll try to use the Fourier transform properties to
know what to expect. The ψ(x) is neither even nor odd, but it is
real, so φ(p) should have an even real part and an odd imaginary
part. Also the width of ψ(x) is 1/α, so the width of φ(p) should
be on the order of h̄α.

Applying equation (2.41) from the textbook we have

φ (p) =
1√
2πh̄

∫ ∞

−∞
e−ipx/h̄ψ (x) dx

=
1√
2πh̄

∫ ∞

0

e−ipx/h̄2α3/2xe−αxdx

=

√
2α3

πh̄

∫ ∞

0

e[−ip/h̄−α]xxdx

Integrating by parts with t = x, dt = dx and ds = e[−ip/h̄−α]xdx,
s = e[−ip/h̄−α]x

−ip/h̄−α
,
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φ (p) =

√
2α3

πh̄

[
xe[−ip/h̄−α]x

−ip/h̄− α

]∞

0

−
√

2α3

πh̄

1

−ip/h̄− α

∫ ∞

0

e[−ip/h̄−α]xdx

The first term vanishes at both limits. At infinity because the
exponential goes to zero (or at least the real exponential does -
the imaginary part is non-zero but finite so when it gets multiplied
by zero it goes to zero), and at 0 because of the x term. So we
have

φ (p) = −
√

2α3

πh̄

1

(−ip/h̄− α)2

[
e[−ip/h̄−α]x

]∞
0

=

√
2α3

πh̄

1

(−ip/h̄− α)2

=

√
2α3

πh̄

1

(ip/h̄ + α)2

=

√
2α3

πh̄

(ip/h̄− α) (ip/h̄− α)

(ip/h̄ + α) (ip/h̄− α) (ip/h̄ + α) (ip/h̄− α)

=

√
2α3

πh̄

(α− ip/h̄)2

(
α2 + p2/h̄2

)2

=

√
2α3

πh̄

(
α2 − p2/h̄2

)− 2iαp/h̄(
α2 + p2/h̄2

)2

So, as expected the real part is even in p and the imaginary part
is odd in p.
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