
PHYS256F November 10, 2006

Introduction to Quantum Mechanics: Problem Set 3

1 Derive the expressions for T and R on page 16 of lecture 18.

Solution: We’ll solve this problem from scratch, but you can start
from the expressions given in Lecture Note 18.

We assume the particle approaches the barrier from the left, so the
wavefunction on the left of the barrier will be a superposition of incident
and reflected waves whereas the wavefunction on the right of the barrier
will only contain the transmitted wave. Note that E > V0, so we expect
an oscillatory solution inside the barrier region, not a decaying solution
as you would expect for E < V0.

The time-independent Schrod̈inger equation is

−h̄2

2m

d2ψ(x)

dx
+ V (x)ψ(x) = Eψ(x)

d2ψ(x)

dx
=
−2mE

h̄2 ψ(x) outside the barrier region

d2ψ(x)

dx
=
−2m(E − V0)

h̄2 ψ(x) inside the barrier region

We define k1 ≡
√

2mE
h̄

and k2 ≡
√

2m(E−V0)

h̄
so that we can rewrite the

equations as

d2ψ(x)

dx
= −k2

1ψ(x) outside the barrier region (x < 0 and x > a)

d2ψ(x)

dx
= −k2

2ψ(x) inside the barrier region (0 < x < a)

These are two second-order ordinary differential equations whose solu-
tions in the three regions {x < 0, 0 < x < a, x > a} can be written

ψ(x) =Aeik1x + Be−ik1x x < 0

ψ(x) =Feik2x + Ge−ik2x 0 < x < a

ψ(x) =Ceik1x x > a

Notice that for x > a we only make use of the solution that propagates
from left to right (positive k1x), since the only way probability can get
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into this region is if it was transmitted through the barrier from the
left side.

Since the potential is everywhere finite both the wavefunction and its
first derivative must be continuous over the steps in the potential at
x = 0 and x = a. This gives us four continuity conditions to satisfy:

At x = 0 the condition on continuity of ψ(x) is

Aeik10 + Be−ik10 = Feik20 + Ge−ik20

A + B = F + G (a)

and the continuity of dψ(x)
dx

gives

Aik1e
ik10 −Bik1e

−ik10 = Fik2e
ik20 −Gik2e

−ik20

Ak1 −Bk1 = Fk2 −Gk2 (b)

Similarly at x = a, continuity in ψ(x) requires

Feik2a + Ge−ik2a = Ceik1a (c)

and continuity of dψ(x)
dx

requires

Fik2e
ik2a −Gik2e

−ik2a = Cik1e
ik1a

Fk2e
ik2a −Gk2e

−ik2a = Ck1e
ik1a (d)

We now have four linear equations for five unknown constants (A, B,
C, F , G), so the system is degenerate with an infinite number of lin-
early dependent solutions (which we expect since we haven’t specified
normalization). We can use the four equations to eliminate any three
of the variables and get a relation in the other two. We want to find the

reflection coefficient R = |B|2
|A|2 and the transmission coefficient T = |C|2

|A|2 ,
so we’ll reduce the equation system to an equation relating B and A
and to another relating C and A.

Reflection coefficient We want to eliminate F , G, and C from the
equation system. Let’s start by combining (a) and (b) to solve for G:

Ak1 −Bk1 = Fk2 −Gk2

Ak1 −Bk1 = (A + B −G)k2 −Gk2

Ak1 −Bk1 − Ak2 −Bk2 = −2Gk2

G = A

(
k2 − k1

2k2

)
+ B

(
k2 + k1

2k2

)
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And we can use this result to solve (a) for F

F = A + B −
[
A

(
k2 − k1

k2

)
+ B

(
k2 + k1

k2

)]

F =
1

2k2

[2Ak2 − A(k2 − k1) + 2Bk2 −B(k1 + k2)]

F =
1

2k2

[A(k2 + k1) + B(k2 − k1)]

F = A

(
k2 + k1

2k2

)
+ B

(
k2 − k1

2k2

)

So we’ve eliminated two variables. We can eliminate C by plugging (c)
into (d).

Fk2e
ik2a −Gk2e

−ik2a = k1

(
Feik2a + Ge−ik2a

)

Feik2a(k2 − k1)−Ge−ik2a(k2 + k1) = 0

And now we can plug in the solutions for F and G and we’ll have an
equation in A and B only.

[
A

(
k2 + k1

2k2

)
+ B

(
k2 − k1

2k2

)]
eik2a(k2 − k1)−

[
A

(
k2 − k1

2k2

)
+ B

(
k2 + k1

2k2

)]
e−ik2a(k2 + k1) = 0

We can now isolate the A and B terms on the two sides of the equation.

A

[
eik2a

(
(k2 + k1)(k2 − k1)

2k2

)
− e−ik2a

(
(k2 − k1)(k2 + k1)

2k2

)]
=

−B

[
eik2a

(
(k2 − k1)(k2 − k1)

2k2

)
− e−ik2a

(
(k2 + k1)(k2 + k1)

2k2

)]

Applying sin φ = (eiφ − e−iφ)/2i and multiplying both sides by 2k2 we
obtain

A(k2
2 − k2

1)(2i sin k2a) = −B
[
(k2 − k1)

2eik2a − e−ik2a(k2 + k1)
2
]

Now we take the magnitude squared of each side and arrive at

|A|2(k2
2 − k2

1)
2(4 sin2 k2a) = |B|2

∣∣(k2 − k1)
2eik2a − e−ik2a(k2 + k1)

2
∣∣2

Now if we have two complex numbers A1e
iφ and A2e

−iφ (with φ, A1
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and A2 real), then

∣∣A1e
iφ − A2e

−iφ
∣∣2 =

(
A1e

iφ − A2e
−iφ

) (
A1e

−iφ − A2e
iφ

)

= A2
1 − A1A2e

2iφ − A1A2e
−2iφ + A2

2

= A2
1 − A1A2

(
e2iφ + e−2iφ

)
+ A2

2

= A2
1 + A2

2 − 2A1A2 cos 2φ

= A2
1 + A2

2 − 2A1A2(1− 2 sin2 φ)

Applying this result to the right side of the equation, we obtain

|A|2(k2
2 − k2

1)
2(4 sin2 k2a) =

|B|2 (
(k2 − k1)

4 + (k2 + k1)
4 − 2(k2 − k1)

2(k2 + k1)
2(1− 2 sin2 k2a)

)

= |B|2 (
(k2 − k1)

4 + (k2 + k1)
4 − 2(k2

2 − k2
1)

2 + 4(k2
2 − k2

1)
2 sin2 k2a

)

Now we need to break up these expressions in k1 and k2. Using the
binomial theorem, we get (k2 + k1)

4 = k4
2 + 4k3

2k1 + 6k2
2k

2
1 + 4k2k

3
1 + k4

1

and (k2 + k1)
4 = k4

2 − 4k3
2k1 + 6k2

2k
2
1 − 4k2k

3
1 + k4

1 so (k2 − k1)
4 + (k2 +

k1)
4 = 2k4

2 + 12k2
2k

2
1 + 2k4

1. Also, (k2
2 − k2

1)
2 = k4

2 − 2k2
1k

2
2 + k2

1, so
(k2−k1)

4 +(k2 +k1)
4−2(k2

2−k2
1)

2 = 16k2
1k

2
2. The expression therefore

simplifies to

|A|2(k2
2 − k2

1)
2(4 sin2 k2a) = |B|2 (

16k2
1k

2
2 + 4(k2

2 − k2
1)

2 sin2 k2a
)

|A|2(k2
2 − k2

1)
2 sin2 k2a = |B|2 (

4k2
1k

2
2 + (k2

2 − k2
1)

2 sin2 k2a
)

So

R =
|B|2
|A|2 =

[(
4k2

1k
2
2 + (k2

2 − k2
1)

2 sin2 k2a
)

(k2
2 − k2

1)
2 sin2 k2a

]−1

=

[
1 +

4k2
1k

2
2

(k2
2 − k2

1)
2 sin2 k2a

]−1

Now we can substitute in the original definitions k1 =
√

2mE
h̄2 and k2 =√

2m(E−V0)

h̄2
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R =

[
1 +

4k2
1k

2
2

(k2
2 − k2

1)
2 sin2 k2a

]−1

=

[
1 +

42mE
h̄2

2m(E−V0)

h̄2

(2m(E−V0)

h̄2 − 2mE
h̄2 )2 sin2 k2a

]−1

=

[
1 +

4E(E − V0)

(−V0)2 sin2 k2a

]−1

=

[
1 +

4E(E − V0)

V 2
0 sin2 k2a

]−1

Which is the desired result.

Transmission Coefficient: Now we have to calculate T . The easy
way to do this is to argue that on physical grounds we need to have an
equal amount of probability approaching the barrier as leaving it. From
the left the probability flow towards the barrier is |A|2k1 and away from
the barrier is |B|2k1. On the right of the barrier the probability flow
away from the barrier is |C|2k1. Probability flow into the barrier equals
probability flow out, so

|A|2k1 = |B|2k1 + |C|2k1

Dividing both sides by |A|2k1 we have

|B|2
|A|2 +

|C|2
|B|2 = 1

R + T = 1
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Plugging the derived expression for R into T = 1−R,

T = 1−
[
1 +

4E(E − V0)

V 2
0 sin2 k2a

]−1

= 1−
[
V 2

0 sin2 k2a + 4E(E − V0)

V 2
0 sin2 k2a

]−1

= 1−
[

V 2
0 sin2 k2a

V 2
0 sin2 k2a + 4E(E − V0)

]

=

[
V 2

0 sin2 k2a + 4E(E − V0)− V 2
0 sin2 k2a

V 2
0 sin2 k2a + 4E(E − V0)

]

=

[
4E(E − V0)

V 2
0 sin2 k2a + 4E(E − V0)

]

=

[
V 2

0 sin2 k2a + 4E(E − V0)

4E(E − V0)

]−1

=

[
1 +

V 2
0 sin2 k2a

4E(E − V0)

]−1

As required.

The hard way is to prove the result is to go through the derivation for
R, but solving the equation system to eliminate F , G and B instead.

We can add (c) to (d)÷k2 to eliminate G

2Feik2a = Ceik1a

(
1 +

k1

k2

)

F = Cei(k1−k2)a

(
k2 + k1

2k2

)

Similarly, we can take the difference of (c) and (d)÷k2 to obtain

2Ge−ik2a = Ceik1a

(
1− k1

k2

)

G = Cei(k1+k2)a

(
k2 − k1

2k2

)

We can use (a) to eliminate B from (b)

Ak1 − (F + G− A)k1 = Fk2 −Gk2

2Ak1 − F (k2 + k1) + G(k2 − k1) = 0
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And substitute the solutions just obtained for G and F in terms of C

2Ak1−Cei(k1−k2)a

(
k2 + k1

2k2

)
(k2 + k1) + Cei(k1+k2)a

(
k2 − k1

2k2

)
(k2 − k1) = 0

2Ak1 = Ceik1a

[
e−ik2a

(
(k2 + k1)

2

2k2

)
− eik2a

(
(k2 − k1)

2

2k2

)]

Taking the magnitude squared of this we get

4|A|2k2
1 = |C|2

∣∣∣∣e−ik2a

(
(k2 + k1)

2

2k2

)
− eik2a

(
(k2 − k1)

2

2k2

)∣∣∣∣
2

= |C|2
[(

(k2
1 + k2

2)
2

2k2

)2

+

(
(k1 − k2)

2

2k2

)2

− 2
(
1− 2 sin2 k2a

) (
(k2

1 + k2
2)

2(k2
1 − k2

2)
2

(2k2)2

)]

Using our binomial expansions in k1 and k2 we get

16|A|2k2
1k

2
2 = |C|2 [

16k2
1k

2
2 + 4 sin2 k2a(k2

1 − k2
2)

2
]

4|A|2k2
1k

2
2 = |C|2 [

4k2
1k

2
2 + sin2 k2a(k2

1 − k2
2)

2
]

So that

T =
|C|2
|A|2 =

4k2
1k

2
2

4k2
1k

2
2 + sin2 k2a(k2

1 − k2
2)

2

Substituting in k1 =
√

2mE
h̄

and k2 =

√
2m(E−V0

h̄
gives

T =
42mE

h̄2
2m(E−V0)

h̄2

4(2mE
h̄2

2m(E−V0)

h̄2 ) + sin2 k2a(2mE
h̄2 − 2m(E−V0)

h̄2 )2

T =
4E(E − V0)

4E(E − V0) + sin2 k2a (E − (E − V0))
2

T =

[
4E(E − V0) + V 2

0 sin2 k2a

4E(E − V0)

]−1

T =

[
1 +

V 2
0 sin2 k2a

4E(E − V0)

]−1

As required.

2 A particle in an infinite square well is in the ground state of the system.
The well has walls at x = a and x = −a if we move the walls instanta-
neously to x = 2a and x = −2a, what is the probability of finding the
particle in the ground state of the new system?

Solution: Initially the particle is in the ground state of the smaller
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well. The expression for the states of this well are given in the textbook
on page 158. Notice that they are different than those given in the notes
since the well runs from −a to a rather than from 0 to a. Notably the
ground state of the well is a cosine rather than a sine function.

ψ0(x) =

√
1

a
cos

πx

2a
−a < x < a

= 0 elsewhere

After the walls of the well have moved the eigenfunctions of the new
well are

φn(x) =

√
1

2a
cos

πnx

4a
−a < x < a

= 0 elsewhere

ψ0(x) could be expanded in the eigenfunctions of the new well as

ψ0(x) =
∑

n

Anφn(x)

where

An =

∫ 2a

−2a

ψ0(x)φn(x)dx

The probability of finding the particle in state ψ0(x) to be in the nth

eigenstate is |An|2. In particular, the probability of finding the particle
to be in the ground state is |A1|2, and

A1 =

√
1

2a

∫ 2a

−2a

ψ0(x) cos
πx

4a
dx

=

√
1

2a

√
1

a

∫ a

−a

cos
πx

2a
cos

πx

4a
dx

Where we’ve reduced the range of integration since ψ0(x) is zero except
over {−a, a}.
We can apply the trig identity cos a cos b = 1

2
(cos (a + b) + cos (a− b))
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to obtain

A1 =
1

2
√

2a

∫ a

−a

(
cos

3πx

4a
+ cos

3πx

4a

)
dx

=
1

2
√

2a

[
4a

3π
sin

3πx

4a
+

4a

π
sin

πx

4a

]x=a

x=−a

=

√
2

π

[
1

3

(
sin

3π

4
− sin

−3π

4

)
+

(
sin

π

4
− sin

−π

4

)]

=

√
2

π

[√
2

3
+
√

2

]

=
8

3π

So |A1|2 = 64/(9π2) ≈ 0.72.

There is a 72% probability of finding the particle in the ground state
of the well after the walls are moved.

4 A particle is in an infinite square with walls at x = 0, x = a. Calculate:

(a) 〈xn〉, 〈pn〉, 〈x2
n〉, and 〈p2

n〉.

(b) Calculate ∆xn∆pn

(
∆A =

√
〈A2〉 − 〈A〉2

)

(c) Estimate the ground state energy using the result above. Com-
pare to the result we obtained

Solution:

(a) These are just a bunch of integrals that need to be crunched
through. The n subscript implies that we are looking for the
expectation values for the energy eigenstates given in the notes,
namely:

φn(x) =

√
2

a
sin

πnx

a

Notice that the functions are different than in the previous prob-
lem because the well runs from 0 to a rather than from −a to
a.

The expectation value for an operator A in the state ψ(x) is de-
fined to be

〈A〉 =

∫
ψ∗(x)Aψ(x)dx
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The operators we need are x = x, p = −ih̄ d
dx

, x2 = x2 and

p2 = −h̄2 d2

d2x
. These can all be found in chapter 3 of the text. So

let’s rock some integrals!

〈xn〉 =
2

a

∫ a

0

sin
πnx

a
x sin

πnx

a
dx

=
2

a

∫ a

0

x sin2 πnx

a
dx

=
2

a

∫ a

0

x

2

(
1− cos

2πnx

a

)
dx

=
1

a

∫ a

0

xdx− 1

a

∫ a

0

x cos
2πnx

a
dx

=
1

a

x2

2

∣∣∣∣
a

0

− 1

a

(
xa

2πn
sin

2πnx

a

∣∣∣∣
a

0

− a

2πn

∫ a

0

sin
2πnx

a
dx

)

=
a

2
−

(
0− 1

2πn

a

2πn
cos

2πnx

a

∣∣∣∣
a

0

)

=
a

2
+

a

(2πn)2
(cos 2πn− 1)

(I integrated by parts to get the fifth line)

But n is an integer, so cos 2πn = 1, the second term vanishes and
we’re left with 〈xn〉 = a/2. The average position of a particle in
the well is the centre of the well. Not too surprising. Onwards!

〈pn〉 =
2

a

∫ a

0

sin
πnx

a

(
−ih̄

d

dx

)
sin

πnx

a
dx

=
−2ih̄

a

∫ a

0

sin
πnx

a

(πn

a
cos

πnx

a

)
dx

=
−2ih̄πn

a2

∫ a

0

sin
πnx

a
cos

πnx

a
dx

=
−2ih̄πn

a2

∫ a

0

1

2
sin

2πnx

a
dx

=
−ih̄πn

a2

[
− a

2πn
cos

2πnx

a

]a

0

=
ih̄

2a
[cos 2πn− 1]

Again cos 2πn = 1, so 〈pn〉 = 0. This completely makes sense.
If the particle is trapped in the well then by definition it isn’t
moving anywhere so its average momentum must be zero.
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〈
x2

n

〉
=

2

a

∫ a

0

sin
πnx

a
x2 sin

πnx

a
dx

=
2

a

∫ a

0

x2 sin2 πnx

a
dx

=
1

a

∫ a

0

x2

(
1− cos

2πnx

a

)
dx

=
1

a

∫ a

0

x2dx− 1

a

∫ a

0

x2 cos
2πnx

a
dx

=
1

a

x3

3

∣∣∣∣
a

0

− 1

a

(
x2a

2πn
sin

2πnx

a

∣∣∣∣
a

0

− a

2πn

∫ a

0

(2x) sin
2πnx

a
dx

)

=
a2

3
−

(
0− 1

πn

∫ a

0

x sin
2πnx

a
dx

)

=
a2

3
+

1

πn

(−xa

2πn
cos

2πnx

a

∣∣∣∣
a

0

− −a

2πn

∫ a

0

cos
2πnx

a
dx

)

=
a2

3
+

1

πn

((−a2

2πn
cos

2πn

a
− 0

)
+

a2

(2πn)2
sin

2πnx

a

∣∣∣∣
a

0

)

=
a2

3
− a2

2π2n2

= a2

(
1

3
− 1

2π2n2

)

And finally...

〈
p2

n

〉
=

2

a

∫ a

0

sin
πnx

a

(
−h̄2 d2

d2x

)
sin

πnx

a
dx

=
−2h̄2

a

∫ a

0

sin
πnx

a

(
−π2n2

a2
sin

πnx

a

)
dx

=
2h̄2π2n2

a3

∫ a

0

sin2 πnx

a
dx

=
h̄2π2n2

a3

∫ a

0

(
1− cos

2πnx

a

)
dx

=
h̄2π2n2

a3

(∫ a

0

dx−
∫ a

0

cos
2πnx

a
dx

)

=
h̄2π2n2

a3

(
a− a

2πn
sin

2πnx

a

∣∣∣∣
a

0

)

=
h̄2π2n2

a3
(a− 0)

=
h̄2π2n2

a2
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Both these expressions have the right units. The only scale given
in the problem is the length scale given by the width of the well
a. All momenta should therefore be proportional to h̄/a.

(b) Let’s find the uncertainties:

∆x =

√
〈x2

n〉 − 〈xn〉2

=

√
a2

(
1

3
− 1

2π2n2

)
− a2

4

= a

√
1

12
− 1

2π2n2

And

∆p =

√
〈p2

n〉 − 〈pn〉2

=

√
h̄2π2n2

a2
− 0

=
h̄πn

a

So

∆x∆p = h̄πn

√
1

12
− 1

2π2n2

= h̄

√
π2n2

12
− 1

2

By Heisenberg’s principle the uncertainty product ∆x∆p must
always be greater than or equal to h̄/2. It’s apparent that the
minimum uncertainty product is minimal when n = 1 and then
∆x∆p ≈ 0.57, so the result seems reasonable.

(c) For trapped particles there is a relation between the momentum
uncertainty and the expectation value of the energy.

〈E〉 =

〈
p2

2m

〉

〈E〉 =
〈p2〉
2m

〈E〉 =
∆p2 + 〈p〉2

2m

〈E〉 =
∆p2

2m
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From the result of part (b), we have ∆p = 0.57h̄/∆x in the ground
state. The width of the in the ground state is ∆x ≈ 0.18a.

〈E〉 ≈ 0.572h̄2

2m∆ (0.182x2)

〈E〉 ≈ 5.0
h̄2

2ma2

The exact solution is

En ≈ h̄2π2n2

2ma2

E1 ≈ 4.9
h̄2

ma2

So our approximation is good.

This question is somewhat vague, so any reasonable use of the
uncertainty principle to estimate energy is good for full marks.
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