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Introduction to Quantum Mechanics: Problem Set 4

1. We start from the definitions given in the notes. Given two linear,
hermitian operators A and B we define

Ā = A− 〈A〉
B̄ = B − 〈B〉
C = Ā + iλB̄

By definition (∆A)2 =
〈
Ā2

〉
and (∆B)2 =

〈
B̄2

〉
. We construct

〈
CC†〉.

〈
CC†〉 = 〈ψ|CC† |ψ〉

=
(
C† |ψ〉) C† |ψ〉

If we take the hermitian transpose of this and apply rule (5.36) for
transposition, we get

[(
C† |ψ〉) C† |ψ〉]† =

(
C† |ψ〉) C† |ψ〉

So
〈
CC†〉 is equal to its hermitian transpose which means that it is

real. Further, since it is the inner product of the vector C† |ψ〉 with
itself, it follows that

〈
CC†〉 is non-negative. Therefore

〈
CC†〉 ≥ 0.

Expanding
〈
CC†〉 in terms of Ā and B̄ gives:

〈
CC†〉 =

〈(
Ā + iλB̄

) (
Ā− iλB̄

)〉

=
〈(

ĀĀ + λ2B̄B̄ − iλĀB̄ + iλB̄Ā
)〉

=
〈
ĀĀ

〉
+ λ2

〈
B̄B̄

〉− iλ
〈[

Ā, B̄
]〉

= (∆A)2 + λ2 (∆B)2 − iλ
〈[

Ā, B̄
]〉

Since we know that the whole quantity is real and the first two terms
are real (they are expectation values of hermitian operators), it follows
that the last term must also be real, meaning that

〈[
Ā, B̄

]〉
is purely

imaginary.

Now
〈
CC†〉 is a real quadratic function of λ. A quadratic function

aλ2 + bλ + c has a single extremum at λ = −b/2a. Since we have
already shown that

〈
CC†〉 is everywhere positive, this extremum must

be a minimum (since if a quadratic function has a maximum it extends
to −∞). Thus

〈
CC†〉 has a minimum at

λ =
i

2

〈[A,B]〉
(∆B2)
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Furthermore, since
〈
CC†〉 is positive everywhere, even at the minimum

value
〈
CC†〉 must be non-zero. Plugging in the minimizing value of

lambda and applying this inequality we have that

〈CC†〉min = (∆A)2 +

(
i

2

〈[A,B]〉
(∆B2)

)2

(∆B)2 − i
i

2

〈[A,B]〉
(∆B2)

〈[
Ā, B̄

]〉 ≥ 0

From which it follows that

(∆A)2 − 1

4

〈[A,B]〉2
(∆B2)

+
1

2

〈[A,B]〉2
(∆B2)

≥ 0

(∆A)2 (∆B)2 +
1

4
〈[A,B]〉2 ≥ 0

but since 〈[A,B]〉 is actually imaginary, 〈[A,B]〉2 is negative. It’s less
confusing to write it as − |〈[A,B]〉|2 which then gives:

(∆A)2 (∆B)2 − 1

4
|〈[A,B]〉|2 ≥ 0

(∆A)2 (∆B)2 ≥ 1

4
|〈[A,B]〉|2

(∆A) (∆B) ≥ 1

2
|〈[A,B]〉|

For the specific case where A = x and B = p, we know that [x, p] = i~
so that |〈[A,B]〉| = ~ and ∆x∆p = ~/2. We can construct the operator
C as

C = (x− 〈x〉) + iλ (p− 〈p〉)
It is obvious from the previous discussion that the minimum value of
〈ψ|CC† |ψ〉 is zero and it will occur when

λ =
i

2

〈[p, x]〉
(∆p)2

=
i

2

−i~
(∆p)2

=
~

2 (∆p)2

so that
〈
CC†〉 is minimized when

C = (x− 〈x〉) + i
~

2 (∆p)2 (p− 〈p〉)

and when this occurs C† |ψ〉 = 0. In the x-basis this looks like

(x− 〈x〉) ψ(x) + i
~

2 (∆p)2

(
−i~

d

dx
− 〈p〉

)
ψ(x) = 0
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i~
(

i~
d

dx
+ 〈p〉

)
ψ(x) = 2 (∆p)2 (x− 〈x〉) ψ(x)

(
−~2 d

dx
+ i~ 〈p〉

)
ψ(x) = 2 (∆p)2 (x− 〈x〉) ψ(x)

Or, slightly rewritten,

~2 d

dx
ψ(x) + 2 (∆p)2 xψ(x) +

(−i~ 〈p〉 − 2 (∆p)2 〈x〉) ψ(x) = 0

This is a first-order differential equation for ψ(x) of the form ψ′(x) +
(ax − b)ψ(x) = 0 where a and b are two constants. Such equations
can be solved by integration. Let a = 2∆p2/~2 and let b = i 〈p〉 /~ +
2∆p2 〈x〉 /~2 then

ψ′(x) + (ax− b)ψ(x) = 0

ψ′(x)

ψ(x)
= −ax + b

d

dx
ln ψ(x) = −ax + b

Taking the antiderivative of both sides gives

ln ψ(x) = −1

2
ax2 + bx

ψ(x) = exp

[
−1

2
ax2 + bx

]

Subsituting in for a and b we get

ψ(x) = C exp

[
i
〈p〉
~

x +
2∆p2 〈x〉x

~2
− ∆p2

~2
x2

]

= C exp

[
i
〈p〉
~

x

]
exp

[
−∆p2

~2
(x− 〈x〉)2

]
exp

[
∆p2

~2
〈x〉2

]

= C ′ exp

[
i
〈p〉
~

x

]
exp

[
−∆p2

~2
(x− 〈x〉)2

]

In the last step the constant exponential obtained by completing the
square was rolled into the normalization constant. This is the desired
result, so we’re done.

2. (Bransden and Joachain 5.11)

The Hamiltonian operator H for a certain physcial system is repre-
sented by the matrix

H = ~ω




1 0 0
0 2 0
0 0 2



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while two other observables A and B are represented by the matrices

A =




0 λ 0
λ 0 0
0 0 2λ


 ,B =




2µ 0 0
0 0 µ
0 µ 0




where λ and µ are real (non-zero) numbers.

(a) Find the eigenvalues and eigenvectors of A and B.

(b) If the system is in a state described by the state vector

u = c1u1 + c2u2 + c3u3

where c1, c2 and c3 are complex constants and

u1 =




1
0
0


 ,u2 =




0
1
0


 ,u3 =




0
0
1




(i) find the relationship between c1, c2 and c3 such that u is
normalised to unity; and

(ii) find the expectation values of H, A and B

(iii) What are the possible values of the energy that can be ob-
tained in a measurement when the system is described by the
state vector u? For each possible result find the wave function
in the matrix representation immediately after the measure-
ment.

Solution:

(a) The nth eigenvector vn of A will have the property that

Avn = anvn (1)

where an is the corresponding eigenvalue. By inspection we can
see that H, A and B are all symmetric matrices so we expect
both their eigenvalues and their eigenvectors to be real. To find
the eigenvectors we must find solutions to equation (1), or, equiv-
alently to:

A− anIvn = 0

Now this has an obvious trivial solution, namely vn = 0, but
that’s not very interesting. To have non-trivial eigenvectors the
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equation system must be degenerate in which case there will be
an infinite number of solution instead of just one. The equation
system can only be degenerate if the determinant of the matrix
(A− anI) vanishes.

|A− anI| = 0∣∣∣∣∣∣

−an λ 0
λ −an 0
0 0 2λ− an

∣∣∣∣∣∣
= 0

(2λ− an)
(
a2

n − λ2
)2

= 0

(2λ− an) (an − λ) (an + λ) = 0

Thus the determinant will vanish if and only if an is either λ, −λ
or 2λ, so these are the eigenvalues. We can find the corresponding
eigenvectors by solving equation (1).

Avn = anvn


0 λ 0
λ 0 0
0 0 2λ







v1

v2

v3


 =




anv1

anv2

anv3




Which is really just three coupled linear equations in the compo-
nents of v, namely

λv2 = anv1

λv1 = anv2

2λv3 = anv3

When an = λ this is

λv2 = λv1

λv1 = λv2

2λv3 = λv3

or

v2 = v1

v1 = v2

2v3 = v3

We can see immediately that v3 = 0, but the equations in v1

and v2 are degenerate (they’re supposed to be — that’s what a
zero determinant means). Set v1 = 1 then v2 = 1 and v3 = 0.
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Now since this is a quantum state we should be normalizing the
vector to unity. 12 + 12 + 02 = 2, so the normalized vector is
v1 = 1/

√
2 (1, 1, 0). Similarly if we use the −λ eigenvalue we

get the eigenvector v2 = 1/
√

2 (1,−1, 0) and with the a3 = 2λ
eigenvalue we get v3 = (0, 0, 1).

The eigenvalues and eigenvectors for B can be found in the same
way. We solve the characteristic equation

|B− bnI| = 0∣∣∣∣∣∣

2µ− bn 0 0
0 −bn µ
0 µ −bn

∣∣∣∣∣∣
= 0

(2µ− bn)
(
b2
n − µ2

)
= 0

(2µ− bn) (bn − µ) (bn + µ) = 0

Which give eigenvalues b1 = 2µ,b2 = µ and b3 = −µ. The eigen-
vectors can be found by solving

2µv1 = bnv1

µv3 = bnv2

µv2 = bnv3

Which give the normalized eigenvectors v1 = (1, 0, 0), v2 = 1/
√

2 (0, 1, 1)
and v3 = 1/

√
2 (0, 1,−1) . In summary:

Matrix A
Eigenvalue Eigenvector

λ 1/
√

2 (1, 1, 0)

−λ 1/
√

2 (1,−1, 0)
2λ (0, 0, 1)

Matrix B
Eigenvalue Eigenvector

2µ (1, 0, 0)

µ 1/
√

2 (0, 1, 1)

−µ 1/
√

2 (0, 1,−1)

(2) (i) By definition u is normalized if u† · u = 1.

u† · u = 1

(
c∗1 c∗2 c∗3

) ·



c1

c2

c3


 = 1

|c1|2 + |c2|2 + |c3|2 = 1

So u is normalized if |c1|2 + |c2|2 + |c3|2 = 1.
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(ii) The expectation value of an operator A for a system in state
u is defined to be

〈A〉 = u†Au

The expectation values can be found directly then as

〈A〉 = u†Au

=
(

c∗1 c∗2 c∗3
)



0 λ 0
λ 0 0
0 0 2λ







c1

c2

c3




=
(

c∗1 c∗2 c∗3
)



λc2

λc1

2λc3




= λc∗1c2 + λc∗2c1 + 2λc∗3c3

= 2λ
(<{c∗1c2}+ |c3|2

)

Notice that the expectation value is real. This has to be the
case for Hermitian operators.

〈B〉 = u†Bu

=
(

c∗1 c∗2 c∗3
)



2µ 0 0
0 0 µ
0 µ 0







c1

c2

c3




=
(

c∗1 c∗2 c∗3
)



2µc1

µc3

µc2




= 2µc∗1c1 + µc∗2c3 + µc∗3c2

= 2µ
(<{c∗2c3}+ |c1|2

)

Again, this is manifestly real. Finally we’ll do the Hamilto-
nian:

〈H〉 = u†Hu

=
(

c∗1 c∗2 c∗3
)
~ω




1 0 0
0 2 0
0 0 2







c1

c2

c3




= ~ω
(

c∗1 c∗2 c∗3
)



c1

2c2

2c3




= ~ωc∗1c1 + 2~ωc∗2c2 + 2~ωc∗3c3

=
(
~ω|c1|2 + 2~ω|c2|2 + 2~ω|c3|2

)
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(iii) According to postulate 4 “The only result of a precise mea-
surement of the dynamical variable A is one of the eigenvalues
an of the linear operator A associated with A.” It follows that
for any state the only possible values of the energy that can
be measured are the eigenvalues of H. Further, for the spe-
cific state u a given energy eigenvalue can only be measured
if there is a non-zero probability of finding the state to be in
the corresponding eigenvector. As it happens, the vectors u1,
u2 and u3 are the eigenvectors of H.

|A− anI| = 0∣∣∣∣∣∣

~ω − En 0 0
0 2~ω − En 0
0 0 2~ω − En

∣∣∣∣∣∣
= 0

(~ω − En) (2~ω − En) (2~ω − En) = 0

Which give eigenvalues E1 = ~ω,E2 = 2~ω and E3 = 2~ω.
The eigenvectors can be found by solving

~ωv1 = Env1

2~ωv2 = Env2

2~ωv3 = Env3

This can be solved to give v1 = (1, 0, 0). The second eigen-
vector is degenerate, so any vector orthogonal to v1 will be
an eigenvector with eigenvalue 2~ω it’s convenient to pick
v2 = (0, 1, 0) and v3 = (0, 0, 1).
So the possible outcomes of an energy measurement are ~ω,
so long as c1 is non-zero and 2~ω as long as either c2 or c3 are
non-zero.
Immediately after a measurement that finds the energy of
the system to be En the system will be in the corresponding
eigenstate. If the energy is measured to be ~ω then the state
of the system will be u1 = (1, 0, 0). If the energy is measured
to be 2~ω then we exclude the possibility of the state being
in u1 = (1, 0, 0), but we have obtained no information about
whether the state is v2 = (0, 1, 0) or u2 = (0, 0, 1). If a
measurement yields no information then there is no collapse,
so the final state of the system is (c2u2 + c3u3)/

√
|c2|2 + |c3|2

where we have renormalized the state by dividing by the new
norm of the vector.

3. (Bransden and Joachain 5.12)

Prove the commutation relations
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(i)

[a−, a+] = 1

and

(ii)

[H, a±] = ±~ωa±

Solution:

(i) a± are defined in equation (5.189) of the book as

a± =
1√
2

[(mω

~

)1/2

x̂∓ i
p̂x

(mω~)1/2

]

Using this definition we can rewrite the commutator as:

[a−, a+] =
1√
2

[(mω

~

)1/2

x̂ + i
p̂x

(mω~)1/2

]
1√
2

[(mω

~

)1/2

x̂− i
p̂x

(mω~)1/2

]
−

1√
2

[(mω

~

)1/2

x̂− i
p̂x

(mω~)1/2

]
1√
2

[(mω

~

)1/2

x̂ + i
p̂x

(mω~)1/2

]

[a−, a+] =
1

2

[(mω

~

)
x̂2 +

p̂x
2

(mω~)
+ i

1

(mω~)1/2

(mω

~

)1/2

(−x̂p̂x + p̂xx̂)

]
−

1

2

[(mω

~

)
x̂2 +

p̂x
2

(mω~)
+ i

1

(mω~)1/2

(mω

~

)1/2

(−p̂xx̂ + x̂p̂x)

]

=
1

2

(
i

~
(p̂xx̂− x̂p̂x − x̂p̂x + p̂xx̂)

)

=
i

~
(p̂xx̂− x̂p̂x)

But the quantity in brackets is just the negative of the commutator
of x̂ and p̂, and we know from (3.77) that [x̂, p̂] = i~. So

[a−, a+] =
i

~
(−i~)

= 1

which is the desired result.

(ii) The simple harmonic oscillator Hamiltonian is defined in (5.188)
to be

H =
p2

x

2m
+

1

2
mω2x2
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so the commutator [H, a±] is

[H, a±] =

(
p2

x

2m
+

1

2
mω2x2

)
1√
2

((mω

~

)1/2

x∓ i
px

(m~ω)1/2

)

− 1√
2

((mω

~

)1/2

x∓ i
px

(m~ω)1/2

)(
p2

x

2m
+

1

2
mω2x2

)

=
1√
2

(
ω1/2

2m1/2~1/2
p2

xx +
m3/2ω5/2

2~1/2
x3 ∓ i

m1/2ω3/2

2~1/2
x2px ∓ i

2m3/2~1/2ω1/2
p3

x

)

− 1√
2

(
ω1/2

2m1/2~1/2
xp2

x +
m3/2ω5/2

2~1/2
x3 ∓ i

m1/2ω3/2

2~1/2
pxx

2 ∓ i

2m3/2~1/2ω1/2
p3

x

)

=
1√
2

(
ω1/2

2m1/2~1/2

(
p2

xx− xp2
x

)∓ i
m1/2ω3/2

2~1/2

(
x2px − pxx

2
))

Now we can simplify the operators using the commutation relation
between xand px, [x, px] = i~.

p2
xx− xp2

x = px (pxx)− (xpx) px

= px (xpx − [x, px])− ([x, px] + pxx) px

= px (xpx − i~)− (i~+ pxx) px

= −2i~px

Similarly,

x2px − pxx
2 = x (xpx)− (pxx) x

= x ([x, px] + pxx)− (xpx − [x, px]) x

= x (i~+ pxx)− (xpx − i~) x

= 2i~x
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so

[H, a±] =
1√
2

(
ω1/2

2m1/2~1/2
(−2i~px)∓ i

m1/2ω3/2

2~1/2
(2i~x)

)

= ~ω
(

1√
2

( −i

m1/2~1/2ω1/2
px ∓ i2

m1/2ω1/2

~1/2
x

))

= −~ω
(

1√
2

(
i

m1/2~1/2ω1/2
px ± (−1)

m1/2ω1/2

~1/2
x

))

= −~ω
(

1√
2

(
i

m1/2~1/2ω1/2
px ∓ m1/2ω1/2

~1/2
x

))

= −∓ ~ω
(

1√
2

(
∓ i

m1/2~1/2ω1/2
px +

m1/2ω1/2

~1/2
x

))

= ±~ω
(

1√
2

((mω

~

)1/2

x∓ i

(m~ω)1/2
px

))

= ±~ωa±

As desired.
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