Introduction to Quantum Mechanics: Problem Set 4

1. We start from the definitions given in the notes. Given two linear, hermitian operators A and B we define

$$
\begin{aligned}
& \bar{A}=A-\langle A\rangle \\
& \bar{B}=B-\langle B\rangle \\
& C=\bar{A}+i \lambda \bar{B}
\end{aligned}
$$

By definition $(\Delta A)^{2}=\left\langle\bar{A}^{2}\right\rangle$ and $(\Delta B)^{2}=\left\langle\bar{B}^{2}\right\rangle$. We construct $\left\langle C C^{\dagger}\right\rangle$.

$$
\begin{aligned}
\left\langle C C^{\dagger}\right\rangle & =\langle\psi| C C^{\dagger}|\psi\rangle \\
& =\left(C^{\dagger}|\psi\rangle\right) C^{\dagger}|\psi\rangle
\end{aligned}
$$

If we take the hermitian transpose of this and apply rule (5.36) for transposition, we get

$$
\left[\left(C^{\dagger}|\psi\rangle\right) C^{\dagger}|\psi\rangle\right]^{\dagger}=\left(C^{\dagger}|\psi\rangle\right) C^{\dagger}|\psi\rangle
$$

So $\left\langle C C^{\dagger}\right\rangle$ is equal to its hermitian transpose which means that it is real. Further, since it is the inner product of the vector $C^{\dagger}|\psi\rangle$ with itself, it follows that $\left\langle C C^{\dagger}\right\rangle$ is non-negative. Therefore $\left\langle C C^{\dagger}\right\rangle \geq 0$. Expanding $\left\langle C C^{\dagger}\right\rangle$ in terms of \bar{A} and \bar{B} gives:

$$
\begin{aligned}
\left\langle C C^{\dagger}\right\rangle & =\langle(\bar{A}+i \lambda \bar{B})(\bar{A}-i \lambda \bar{B})\rangle \\
& =\left\langle\left(\bar{A} \bar{A}+\lambda^{2} \bar{B} \bar{B}-i \lambda \bar{A} \bar{B}+i \lambda \bar{B} \bar{A}\right)\right\rangle \\
& =\langle\bar{A} \bar{A}\rangle+\lambda^{2}\langle\bar{B} \bar{B}\rangle-i \lambda\langle[\bar{A}, \bar{B}]\rangle \\
& =(\Delta A)^{2}+\lambda^{2}(\Delta B)^{2}-i \lambda\langle[\bar{A}, \bar{B}]\rangle
\end{aligned}
$$

Since we know that the whole quantity is real and the first two terms are real (they are expectation values of hermitian operators), it follows that the last term must also be real, meaning that $\langle[\bar{A}, \bar{B}]\rangle$ is purely imaginary.
Now $\left\langle C C^{\dagger}\right\rangle$ is a real quadratic function of λ. A quadratic function $a \lambda^{2}+b \lambda+c$ has a single extremum at $\lambda=-b / 2 a$. Since we have already shown that $\left\langle C C^{\dagger}\right\rangle$ is everywhere positive, this extremum must be a minimum (since if a quadratic function has a maximum it extends to $-\infty$). Thus $\left\langle C C^{\dagger}\right\rangle$ has a minimum at

$$
\lambda=\frac{i}{2} \frac{\langle[A, B]\rangle}{\left(\Delta B^{2}\right)}
$$

Furthermore, since $\left\langle C C^{\dagger}\right\rangle$ is positive everywhere, even at the minimum value $\left\langle C C^{\dagger}\right\rangle$ must be non-zero. Plugging in the minimizing value of lambda and applying this inequality we have that

$$
\langle C C \dagger\rangle_{\min }=(\Delta A)^{2}+\left(\frac{i}{2} \frac{\langle[A, B]\rangle}{\left(\Delta B^{2}\right)}\right)^{2}(\Delta B)^{2}-i \frac{i}{2} \frac{\langle[A, B]\rangle}{\left(\Delta B^{2}\right)}\langle[\bar{A}, \bar{B}]\rangle \geq 0
$$

From which it follows that

$$
\begin{gathered}
(\Delta A)^{2}-\frac{1}{4} \frac{\langle[A, B]\rangle^{2}}{\left(\Delta B^{2}\right)}+\frac{1}{2} \frac{\langle[A, B]\rangle^{2}}{\left(\Delta B^{2}\right)} \geq 0 \\
(\Delta A)^{2}(\Delta B)^{2}+\frac{1}{4}\langle[A, B]\rangle^{2} \geq 0
\end{gathered}
$$

but since $\langle[A, B]\rangle$ is actually imaginary, $\langle[A, B]\rangle^{2}$ is negative. It's less confusing to write it as $-|\langle[A, B]\rangle|^{2}$ which then gives:

$$
\begin{aligned}
(\Delta A)^{2}(\Delta B)^{2}-\frac{1}{4}|\langle[A, B]\rangle|^{2} & \geq 0 \\
(\Delta A)^{2}(\Delta B)^{2} & \geq \frac{1}{4}|\langle[A, B]\rangle|^{2} \\
(\Delta A)(\Delta B) & \geq \frac{1}{2}|\langle[A, B]\rangle|
\end{aligned}
$$

For the specific case where $A=x$ and $B=p$, we know that $[x, p]=i \hbar$ so that $|\langle[A, B]\rangle|=\hbar$ and $\Delta x \Delta p=\hbar / 2$. We can construct the operator C as

$$
C=(x-\langle x\rangle)+i \lambda(p-\langle p\rangle)
$$

It is obvious from the previous discussion that the minimum value of $\langle\psi| C C^{\dagger}|\psi\rangle$ is zero and it will occur when

$$
\begin{aligned}
\lambda & =\frac{i}{2} \frac{\langle[p, x]\rangle}{(\Delta p)^{2}} \\
& =\frac{i}{2} \frac{-i \hbar}{(\Delta p)^{2}} \\
& =\frac{\hbar}{2(\Delta p)^{2}}
\end{aligned}
$$

so that $\left\langle C C^{\dagger}\right\rangle$ is minimized when

$$
C=(x-\langle x\rangle)+i \frac{\hbar}{2(\Delta p)^{2}}(p-\langle p\rangle)
$$

and when this occurs $C^{\dagger}|\psi\rangle=0$. In the x-basis this looks like

$$
(x-\langle x\rangle) \psi(x)+i \frac{\hbar}{2(\Delta p)^{2}}\left(-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}-\langle p\rangle\right) \psi(x)=0
$$

$$
\begin{array}{r}
i \hbar\left(i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}+\langle p\rangle\right) \psi(x)=2(\Delta p)^{2}(x-\langle x\rangle) \psi(x) \\
\left(-\hbar^{2} \frac{\mathrm{~d}}{\mathrm{~d} x}+i \hbar\langle p\rangle\right) \psi(x)=2(\Delta p)^{2}(x-\langle x\rangle) \psi(x)
\end{array}
$$

Or, slightly rewritten,

$$
\hbar^{2} \frac{\mathrm{~d}}{\mathrm{~d} x} \psi(x)+2(\Delta p)^{2} x \psi(x)+\left(-i \hbar\langle p\rangle-2(\Delta p)^{2}\langle x\rangle\right) \psi(x)=0
$$

This is a first-order differential equation for $\psi(x)$ of the form $\psi^{\prime}(x)+$ $(a x-b) \psi(x)=0$ where a and b are two constants. Such equations can be solved by integration. Let $a=2 \Delta p^{2} / \hbar^{2}$ and let $b=i\langle p\rangle / \hbar+$ $2 \Delta p^{2}\langle x\rangle / \hbar^{2}$ then

$$
\begin{aligned}
\psi^{\prime}(x)+(a x-b) \psi(x) & =0 \\
\frac{\psi^{\prime}(x)}{\psi(x)} & =-a x+b \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \ln \psi(x) & =-a x+b
\end{aligned}
$$

Taking the antiderivative of both sides gives

$$
\begin{aligned}
\ln \psi(x) & =-\frac{1}{2} a x^{2}+b x \\
\psi(x) & =\exp \left[-\frac{1}{2} a x^{2}+b x\right]
\end{aligned}
$$

Subsituting in for a and b we get

$$
\begin{aligned}
\psi(x) & =C \exp \left[i \frac{\langle p\rangle}{\hbar} x+\frac{2 \Delta p^{2}\langle x\rangle x}{\hbar^{2}}-\frac{\Delta p^{2}}{\hbar^{2}} x^{2}\right] \\
& =C \exp \left[i \frac{\langle p\rangle}{\hbar} x\right] \exp \left[-\frac{\Delta p^{2}}{\hbar^{2}}(x-\langle x\rangle)^{2}\right] \exp \left[\frac{\Delta p^{2}}{\hbar^{2}}\langle x\rangle^{2}\right] \\
& =C^{\prime} \exp \left[i \frac{\langle p\rangle}{\hbar} x\right] \exp \left[-\frac{\Delta p^{2}}{\hbar^{2}}(x-\langle x\rangle)^{2}\right]
\end{aligned}
$$

In the last step the constant exponential obtained by completing the square was rolled into the normalization constant. This is the desired result, so we're done.
2. (Bransden and Joachain 5.11)

The Hamiltonian operator H for a certain physcial system is represented by the matrix

$$
\mathbf{H}=\hbar \omega\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

while two other observables A and B are represented by the matrices

$$
\mathbf{A}=\left(\begin{array}{ccc}
0 & \lambda & 0 \\
\lambda & 0 & 0 \\
0 & 0 & 2 \lambda
\end{array}\right), \mathbf{B}=\left(\begin{array}{ccc}
2 \mu & 0 & 0 \\
0 & 0 & \mu \\
0 & \mu & 0
\end{array}\right)
$$

where λ and μ are real (non-zero) numbers.
(a) Find the eigenvalues and eigenvectors of \mathbf{A} and \mathbf{B}.
(b) If the system is in a state described by the state vector

$$
\mathbf{u}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}
$$

where c_{1}, c_{2} and c_{3} are complex constants and

$$
\mathbf{u}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \mathbf{u}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

(i) find the relationship between c_{1}, c_{2} and c_{3} such that \mathbf{u} is normalised to unity; and
(ii) find the expectation values of H, A and B
(iii) What are the possible values of the energy that can be obtained in a measurement when the system is described by the state vector \mathbf{u} ? For each possible result find the wave function in the matrix representation immediately after the measurement.

Solution:

(a) The $n^{\text {th }}$ eigenvector \mathbf{v}_{n} of \mathbf{A} will have the property that

$$
\begin{equation*}
\mathbf{A} \mathbf{v}_{n}=a_{n} \mathbf{v}_{n} \tag{1}
\end{equation*}
$$

where a_{n} is the corresponding eigenvalue. By inspection we can see that \mathbf{H}, \mathbf{A} and \mathbf{B} are all symmetric matrices so we expect both their eigenvalues and their eigenvectors to be real. To find the eigenvectors we must find solutions to equation (1), or, equivalently to:

$$
\mathbf{A}-a_{n} \mathbb{I} \mathbf{v}_{n}=0
$$

Now this has an obvious trivial solution, namely $\mathbf{v}_{n}=\mathbf{0}$, but that's not very interesting. To have non-trivial eigenvectors the
equation system must be degenerate in which case there will be an infinite number of solution instead of just one. The equation system can only be degenerate if the determinant of the matrix $\left(\mathbf{A}-a_{n} \mathbb{I}\right)$ vanishes.

$$
\begin{aligned}
\left|\mathbf{A}-a_{n} \mathbb{I}\right| & =0 \\
\left|\begin{array}{ccc}
-a_{n} & \lambda & 0 \\
\lambda & -a_{n} & 0 \\
0 & 0 & 2 \lambda-a_{n}
\end{array}\right| & =0 \\
\left(2 \lambda-a_{n}\right)\left(a_{n}^{2}-\lambda^{2}\right)^{2} & =0 \\
\left(2 \lambda-a_{n}\right)\left(a_{n}-\lambda\right)\left(a_{n}+\lambda\right) & =0
\end{aligned}
$$

Thus the determinant will vanish if and only if a_{n} is either $\lambda,-\lambda$ or 2λ, so these are the eigenvalues. We can find the corresponding eigenvectors by solving equation (1).

$$
\begin{aligned}
\mathbf{A v _ { n }} & =a_{n} \mathbf{v}_{n} \\
\left(\begin{array}{ccc}
0 & \lambda & 0 \\
\lambda & 0 & 0 \\
0 & 0 & 2 \lambda
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) & =\left(\begin{array}{l}
a_{n} v_{1} \\
a_{n} v_{2} \\
a_{n} v_{3}
\end{array}\right)
\end{aligned}
$$

Which is really just three coupled linear equations in the components of \mathbf{v}, namely

$$
\begin{aligned}
\lambda v_{2} & =a_{n} v_{1} \\
\lambda v_{1} & =a_{n} v_{2} \\
2 \lambda v_{3} & =a_{n} v_{3}
\end{aligned}
$$

When $a_{n}=\lambda$ this is

$$
\begin{aligned}
\lambda v_{2} & =\lambda v_{1} \\
\lambda v_{1} & =\lambda v_{2} \\
2 \lambda v_{3} & =\lambda v_{3}
\end{aligned}
$$

or

$$
\begin{aligned}
v_{2} & =v_{1} \\
v_{1} & =v_{2} \\
2 v_{3} & =v_{3}
\end{aligned}
$$

We can see immediately that $v_{3}=0$, but the equations in v_{1} and v_{2} are degenerate (they're supposed to be - that's what a zero determinant means). Set $v_{1}=1$ then $v_{2}=1$ and $v_{3}=0$.

Now since this is a quantum state we should be normalizing the vector to unity. $1^{2}+1^{2}+0^{2}=2$, so the normalized vector is $\mathbf{v}_{1}=1 / \sqrt{2}(1,1,0)$. Similarly if we use the $-\lambda$ eigenvalue we get the eigenvector $\mathbf{v}_{2}=1 / \sqrt{2}(1,-1,0)$ and with the $a_{3}=2 \lambda$ eigenvalue we get $\mathbf{v}_{3}=(0,0,1)$.
The eigenvalues and eigenvectors for \mathbf{B} can be found in the same way. We solve the characteristic equation

$$
\begin{aligned}
\left|\mathbf{B}-b_{n} \mathbb{I}\right| & =0 \\
\left|\begin{array}{ccc}
2 \mu-b_{n} & 0 & 0 \\
0 & -b_{n} & \mu \\
0 & \mu & -b_{n}
\end{array}\right| & =0 \\
\left(2 \mu-b_{n}\right)\left(b_{n}^{2}-\mu^{2}\right) & =0 \\
\left(2 \mu-b_{n}\right)\left(b_{n}-\mu\right)\left(b_{n}+\mu\right) & =0
\end{aligned}
$$

Which give eigenvalues $b_{1}=2 \mu, b_{2}=\mu$ and $b_{3}=-\mu$. The eigenvectors can be found by solving

$$
\begin{aligned}
2 \mu v_{1} & =b_{n} v_{1} \\
\mu v_{3} & =b_{n} v_{2} \\
\mu v_{2} & =b_{n} v_{3}
\end{aligned}
$$

Which give the normalized eigenvectors $\mathbf{v}_{1}=(1,0,0), \mathbf{v}_{2}=1 / \sqrt{2}(0,1,1)$ and $\mathbf{v}_{3}=1 / \sqrt{2}(0,1,-1)$. In summary:

Matrix A

Eigenvalue	Eigenvector
λ	$1 / \sqrt{2}(1,1,0)$
$-\lambda$	$1 / \sqrt{2}(1,-1,0)$
2λ	$(0,0,1)$
Matrix \mathbf{B}	
Eigenvalue	Eigenvector
2μ	$(1,0,0)$
μ	$1 / \sqrt{2}(0,1,1)$
$-\mu$	$1 / \sqrt{2}(0,1,-1)$

(2) (i) By definition \mathbf{u} is normalized if $\mathbf{u}^{\dagger} \cdot \mathbf{u}=1$.

$$
\begin{aligned}
\mathbf{u}^{\dagger} \cdot \mathbf{u} & =1 \\
\left(\begin{array}{lll}
c_{1}^{*} & c_{2}^{*} & c_{3}^{*}
\end{array}\right) \cdot\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) & =1 \\
\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2} & =1
\end{aligned}
$$

So \mathbf{u} is normalized if $\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}=1$.
(ii) The expectation value of an operator \mathbf{A} for a system in state \mathbf{u} is defined to be

$$
\langle\mathbf{A}\rangle=\mathbf{u}^{\dagger} \mathbf{A} \mathbf{u}
$$

The expectation values can be found directly then as

$$
\begin{aligned}
\langle\mathbf{A}\rangle & =\mathbf{u}^{\dagger} \mathbf{A} \mathbf{u} \\
& =\left(\begin{array}{lll}
c_{1}^{*} & c_{2}^{*} & c_{3}^{*}
\end{array}\right)\left(\begin{array}{ccc}
0 & \lambda & 0 \\
\lambda & 0 & 0 \\
0 & 0 & 2 \lambda
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =\left(\begin{array}{lll}
c_{1}^{*} & c_{2}^{*} & c_{3}^{*}
\end{array}\right)\left(\begin{array}{c}
\lambda c_{2} \\
\lambda c_{1} \\
2 \lambda c_{3}
\end{array}\right) \\
& =\lambda c_{1}^{*} c_{2}+\lambda c_{2}^{*} c_{1}+2 \lambda c_{3}^{*} c_{3} \\
& =2 \lambda\left(\Re\left\{c_{1}^{*} c_{2}\right\}+\left|c_{3}\right|^{2}\right)
\end{aligned}
$$

Notice that the expectation value is real. This has to be the case for Hermitian operators.

$$
\begin{aligned}
\langle\mathbf{B}\rangle & =\mathbf{u}^{\dagger} \mathbf{B u} \\
& =\left(\begin{array}{lll}
c_{1}^{*} & c_{2}^{*} & c_{3}^{*}
\end{array}\right)\left(\begin{array}{ccc}
2 \mu & 0 & 0 \\
0 & 0 & \mu \\
0 & \mu & 0
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =\left(\begin{array}{lll}
c_{1}^{*} & c_{2}^{*} & c_{3}^{*}
\end{array}\right)\left(\begin{array}{c}
2 \mu c_{1} \\
\mu c_{3} \\
\mu c_{2}
\end{array}\right) \\
& =2 \mu c_{1}^{*} c_{1}+\mu c_{2}^{*} c_{3}+\mu c_{3}^{*} c_{2} \\
& =2 \mu\left(\Re\left\{c_{2}^{*} c_{3}\right\}+\left|c_{1}\right|^{2}\right)
\end{aligned}
$$

Again, this is manifestly real. Finally we'll do the Hamiltonian:

$$
\begin{aligned}
\langle\mathbf{H}\rangle & =\mathbf{u}^{\dagger} \mathbf{H} \mathbf{u} \\
& =\left(\begin{array}{lll}
c_{1}^{*} & c_{2}^{*} & c_{3}^{*}
\end{array}\right) \hbar \omega\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =\hbar \omega\left(\begin{array}{lll}
c_{1}^{*} & c_{2}^{*} & c_{3}^{*}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
2 c_{2} \\
2 c_{3}
\end{array}\right) \\
& =\hbar \omega c_{1}^{*} c_{1}+2 \hbar \omega c_{2}^{*} c_{2}+2 \hbar \omega c_{3}^{*} c_{3} \\
& =\left(\hbar \omega\left|c_{1}\right|^{2}+2 \hbar \omega\left|c_{2}\right|^{2}+2 \hbar \omega\left|c_{3}\right|^{2}\right)
\end{aligned}
$$

(iii) According to postulate 4 "The only result of a precise measurement of the dynamical variable A is one of the eigenvalues a_{n} of the linear operator A associated with A." It follows that for any state the only possible values of the energy that can be measured are the eigenvalues of \mathbf{H}. Further, for the specific state \mathbf{u} a given energy eigenvalue can only be measured if there is a non-zero probability of finding the state to be in the corresponding eigenvector. As it happens, the vectors \mathbf{u}_{1}, \mathbf{u}_{2} and \mathbf{u}_{3} are the eigenvectors of \mathbf{H}.

$$
\begin{aligned}
& \\
\left|\begin{array}{ccc}
\mathbf{A}-a_{n} \mathbb{I} \mid & =0 \\
\hbar \omega-E_{n} & 0 & 0 \\
0 & 2 \hbar \omega-E_{n} & 0 \\
0 & 0 & 2 \hbar \omega-E_{n}
\end{array}\right| & =0 \\
\left(\hbar \omega-E_{n}\right)\left(2 \hbar \omega-E_{n}\right)\left(2 \hbar \omega-E_{n}\right) & =0
\end{aligned}
$$

Which give eigenvalues $E_{1}=\hbar \omega, E_{2}=2 \hbar \omega$ and $E_{3}=2 \hbar \omega$. The eigenvectors can be found by solving

$$
\begin{aligned}
\hbar \omega v_{1} & =E_{n} v_{1} \\
2 \hbar \omega v_{2} & =E_{n} v_{2} \\
2 \hbar \omega v_{3} & =E_{n} v_{3}
\end{aligned}
$$

This can be solved to give $\mathbf{v}_{1}=(1,0,0)$. The second eigenvector is degenerate, so any vector orthogonal to \mathbf{v}_{1} will be an eigenvector with eigenvalue $2 \hbar \omega$ it's convenient to pick $\mathbf{v}_{2}=(0,1,0)$ and $\mathbf{v}_{3}=(0,0,1)$.
So the possible outcomes of an energy measurement are $\hbar \omega$, so long as c_{1} is non-zero and $2 \hbar \omega$ as long as either c_{2} or c_{3} are non-zero.
Immediately after a measurement that finds the energy of the system to be E_{n} the system will be in the corresponding eigenstate. If the energy is measured to be $\hbar \omega$ then the state of the system will be $\mathbf{u}_{1}=(1,0,0)$. If the energy is measured to be $2 \hbar \omega$ then we exclude the possibility of the state being in $\mathbf{u}_{1}=(1,0,0)$, but we have obtained no information about whether the state is $\mathbf{v}_{2}=(0,1,0)$ or $\mathbf{u}_{2}=(0,0,1)$. If a measurement yields no information then there is no collapse, so the final state of the system is $\left(c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}\right) / \sqrt{\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}}$ where we have renormalized the state by dividing by the new norm of the vector.
3. (Bransden and Joachain 5.12)

Prove the commutation relations
(i)

$$
\left[a_{-}, a_{+}\right]=1
$$

and
(ii)

$$
\left[H, a_{ \pm}\right]= \pm \hbar \omega a_{ \pm}
$$

Solution:

(i) $a_{ \pm}$are defined in equation (5.189) of the book as

$$
a_{ \pm}=\frac{1}{\sqrt{2}}\left[\left(\frac{m \omega}{\hbar}\right)^{1 / 2} \hat{x} \mp i \frac{\hat{p_{x}}}{(m \omega \hbar)^{1 / 2}}\right]
$$

Using this definition we can rewrite the commutator as:

$$
\begin{aligned}
& {\left[a_{-}, a_{+}\right]=} \frac{1}{\sqrt{2}}\left[\left(\frac{m \omega}{\hbar}\right)^{1 / 2} \hat{x}+i \frac{\hat{p_{x}}}{(m \omega \hbar)^{1 / 2}}\right] \frac{1}{\sqrt{2}}\left[\left(\frac{m \omega}{\hbar}\right)^{1 / 2} \hat{x}-i \frac{\hat{p_{x}}}{(m \omega \hbar)^{1 / 2}}\right]- \\
& \quad \frac{1}{\sqrt{2}}\left[\left(\frac{m \omega}{\hbar}\right)^{1 / 2} \hat{x}-i \frac{\hat{p_{x}}}{(m \omega \hbar)^{1 / 2}}\right] \frac{1}{\sqrt{2}}\left[\left(\frac{m \omega}{\hbar}\right)^{1 / 2} \hat{x}+i \frac{\hat{p_{x}}}{(m \omega \hbar)^{1 / 2}}\right] \\
& {\left[a_{-}, a_{+}\right]=} \frac{1}{2}\left[\left(\frac{m \omega}{\hbar}\right) \hat{x}^{2}+\frac{\hat{p}_{x}^{2}}{(m \omega \hbar)}+i \frac{1}{(m \omega \hbar)^{1 / 2}}\left(\frac{m \omega}{\hbar}\right)^{1 / 2}\left(-\hat{x} \hat{p_{x}}+\hat{p_{x}} \hat{x}\right)\right]- \\
& \frac{1}{2}\left[\left(\frac{m \omega}{\hbar}\right) \hat{x}^{2}+\frac{\hat{p}_{x}^{2}}{(m \omega \hbar)}+i \frac{1}{(m \omega \hbar)^{1 / 2}}\left(\frac{m \omega}{\hbar}\right)^{1 / 2}\left(-\hat{p_{x}} \hat{x}+\hat{x} \hat{p}_{x}\right)\right] \\
&= \frac{1}{2}\left(\frac{i}{\hbar}\left(\hat{p_{x}} \hat{x}-\hat{x} \hat{p_{x}}-\hat{x} \hat{p_{x}}+\hat{p_{x}} \hat{x}\right)\right) \\
&= \frac{i}{\hbar}\left(\hat{p_{x}} \hat{x}-\hat{x} \hat{p_{x}}\right)
\end{aligned}
$$

But the quantity in brackets is just the negative of the commutator of \hat{x} and \hat{p}, and we know from (3.77) that $[\hat{x}, \hat{p}]=i \hbar$. So

$$
\begin{aligned}
{\left[a_{-}, a_{+}\right] } & =\frac{i}{\hbar}(-i \hbar) \\
& =1
\end{aligned}
$$

which is the desired result.
(ii) The simple harmonic oscillator Hamiltonian is defined in (5.188) to be

$$
H=\frac{p_{x}^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}
$$

so the commutator $\left[H, a_{ \pm}\right]$is

$$
\begin{aligned}
{\left[H, a_{ \pm}\right] } & =\left(\frac{p_{x}^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}\right) \frac{1}{\sqrt{2}}\left(\left(\frac{m \omega}{\hbar}\right)^{1 / 2} x \mp i \frac{p_{x}}{(m \hbar \omega)^{1 / 2}}\right) \\
& -\frac{1}{\sqrt{2}}\left(\left(\frac{m \omega}{\hbar}\right)^{1 / 2} x \mp i \frac{p_{x}}{(m \hbar \omega)^{1 / 2}}\right)\left(\frac{p_{x}^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}\right) \\
& =\frac{1}{\sqrt{2}}\left(\frac{\omega^{1 / 2}}{2 m^{1 / 2} \hbar^{1 / 2}} p_{x}^{2} x+\frac{m^{3 / 2} \omega^{5 / 2}}{2 \hbar^{1 / 2}} x^{3} \mp i \frac{m^{1 / 2} \omega^{3 / 2}}{2 \hbar^{1 / 2}} x^{2} p_{x} \mp \frac{i}{2 m^{3 / 2} \hbar^{1 / 2} \omega^{1 / 2}} p_{x}^{3}\right) \\
& -\frac{1}{\sqrt{2}}\left(\frac{\omega^{1 / 2}}{2 m^{1 / 2} \hbar^{1 / 2}} x p_{x}^{2}+\frac{m^{3 / 2} \omega^{5 / 2}}{2 \hbar^{1 / 2}} x^{3} \mp i \frac{m^{1 / 2} \omega^{3 / 2}}{2 \hbar^{1 / 2}} p_{x} x^{2} \mp \frac{i}{2 m^{3 / 2} \hbar^{1 / 2} \omega^{1 / 2}} p_{x}^{3}\right) \\
& =\frac{1}{\sqrt{2}}\left(\frac{\omega^{1 / 2}}{2 m^{1 / 2} \hbar^{1 / 2}}\left(p_{x}^{2} x-x p_{x}^{2}\right) \mp i \frac{m^{1 / 2} \omega^{3 / 2}}{2 \hbar^{1 / 2}}\left(x^{2} p_{x}-p_{x} x^{2}\right)\right)
\end{aligned}
$$

Now we can simplify the operators using the commutation relation between x and $p_{x},\left[x, p_{x}\right]=i \hbar$.

$$
\begin{aligned}
p_{x}^{2} x-x p_{x}^{2} & =p_{x}\left(p_{x} x\right)-\left(x p_{x}\right) p_{x} \\
& =p_{x}\left(x p_{x}-\left[x, p_{x}\right]\right)-\left(\left[x, p_{x}\right]+p_{x} x\right) p_{x} \\
& =p_{x}\left(x p_{x}-i \hbar\right)-\left(i \hbar+p_{x} x\right) p_{x} \\
& =-2 i \hbar p_{x}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
x^{2} p_{x}-p_{x} x^{2} & =x\left(x p_{x}\right)-\left(p_{x} x\right) x \\
& =x\left(\left[x, p_{x}\right]+p_{x} x\right)-\left(x p_{x}-\left[x, p_{x}\right]\right) x \\
& =x\left(i \hbar+p_{x} x\right)-\left(x p_{x}-i \hbar\right) x \\
& =2 i \hbar x
\end{aligned}
$$

$$
\begin{aligned}
{\left[H, a_{ \pm}\right] } & =\frac{1}{\sqrt{2}}\left(\frac{\omega^{1 / 2}}{2 m^{1 / 2} \hbar^{1 / 2}}\left(-2 i \hbar p_{x}\right) \mp i \frac{m^{1 / 2} \omega^{3 / 2}}{2 \hbar^{1 / 2}}(2 i \hbar x)\right) \\
& =\hbar \omega\left(\frac{1}{\sqrt{2}}\left(\frac{-i}{m^{1 / 2} \hbar^{1 / 2} \omega^{1 / 2}} p_{x} \mp i^{2} \frac{m^{1 / 2} \omega^{1 / 2}}{\hbar^{1 / 2}} x\right)\right) \\
& =-\hbar \omega\left(\frac{1}{\sqrt{2}}\left(\frac{i}{m^{1 / 2} \hbar^{1 / 2} \omega^{1 / 2}} p_{x} \pm(-1) \frac{m^{1 / 2} \omega^{1 / 2}}{\hbar^{1 / 2}} x\right)\right) \\
& =-\hbar \omega\left(\frac{1}{\sqrt{2}}\left(\frac{i}{m^{1 / 2} \hbar^{1 / 2} \omega^{1 / 2}} p_{x} \mp \frac{m^{1 / 2} \omega^{1 / 2}}{\hbar^{1 / 2}} x\right)\right) \\
& =-\mp \hbar \omega\left(\frac{1}{\sqrt{2}}\left(\mp \frac{i}{m^{1 / 2} \hbar^{1 / 2} \omega^{1 / 2}} p_{x}+\frac{m^{1 / 2} \omega^{1 / 2}}{\hbar^{1 / 2}} x\right)\right) \\
& = \pm \hbar \omega\left(\frac{1}{\sqrt{2}}\left(\left(\frac{m \omega}{\hbar}\right)^{1 / 2} x \mp \frac{i}{(m \hbar \omega)^{1 / 2}} p_{x}\right)\right) \\
& = \pm \hbar \omega a_{ \pm}
\end{aligned}
$$

As desired.

