Introduction to Quantum Mechanics: Problem Set 5

- 1. (Textbook 6.13) Consider a free particle of mass μ constrained to move on a ring of radius a.
 - (a) Show that the Hamiltonian of this system is

$$H = L_z^2/2I$$

where the z-axis is through the center O of the ring and is perpendicular to its plane, and I is the moment of inertia of the particle with respect to the center O.

(b) Find the energy eigenfunctions for the system and write down a general expression for the solution of the time-dependent Schrödinger equation.

Solution

(a) First, we note that the moment of inertia of a particle of mass μ , with respect to a point O, is given by $I = \mu r^2$ where r is the distance from the particle to O. In our case, r is fixed to be the radius of the circle, so $I = \mu a^2$. We will now solve the problem in two different ways.

1) Since we are dealing with a free particle, the energy is given by the kinetic term only: $E = \mu v^2/2$. The z-component of the angular momentum is $L_z = (\mathbf{r} \times \mathbf{p}) \cdot \hat{\mathbf{z}} = \mu (\mathbf{r} \times \mathbf{v}) \cdot \hat{\mathbf{z}}$. But, for motion in a circle in the x-y plane, \mathbf{v} and \mathbf{r} are perpendicular and their cross product points in the $\hat{\mathbf{z}}$ direction. Also, the magnitude of \mathbf{r} is fixed to be a. Thus, we find that $L_z = \mu |\mathbf{r} \times \mathbf{v}| = \mu v a$, and we can express the energy as

$$E = \mu v^2/2$$
$$= \mu L_z^2/2\mu^2 a^2$$
$$= L_z^2/2\mu a^2$$
$$= L_z^2/2I.$$

So our Hamiltonian operator in the Schrödinger equation will be $\hat{H} = \hat{L}_z^2/2I$.

2) We note that since the particle is constrained to a circle, this is just a **one dimensional** free particle problem. Let x be the distance traveled on the ring (arc length) from some point, which we will denote by x = 0. x can take any value between 0 and $2\pi a$, but since 0 and $2\pi a$ are the same point, we demand that $\psi(0) = \psi(2\pi a)$ for any function $\psi(x)$. The hamiltonian for a 1-D free particle of mass μ is given by

$$\hat{H} = \frac{\hat{p}^2}{2\mu} = -\frac{\hbar^2}{2\mu} \frac{d^2}{dx^2}$$

in the x basis. Now, change coordinates from the length x to the angle ϕ using $x = a\phi$. Then $\frac{d^2}{dx^2} = \frac{1}{a^2} \frac{d^2}{d\phi^2}$, so

$$\hat{H} = -\frac{\hbar^2}{2\mu a^2} \frac{d^2}{d\phi^2} = \frac{\hat{L}_z^2}{2I},$$

where we've made use of $\hat{L}_z = -i\hbar \frac{d}{d\phi}$.

(b) Since \hat{H} is just a function of \hat{L}_z , the eigenfunctions \hat{H} and \hat{L}_z will be the same. The eigenfunctions $\Phi_m(\phi)$ of \hat{L}_z are those that satisfy the equation

$$\hat{L}_z \Phi_m(\phi) = -i\hbar \frac{d\Phi_m(\phi)}{d\phi} = m\hbar \Phi_m(\phi).$$

where we have put in the factor of \hbar explicitly in the eigenvalue, anticipating our result. The solution to this simple differential equation is

$$\Phi_m(\phi) = e^{im\phi},$$

for any value of m. However, we have not yet used the boundary conditions (i.e. conditions at the 'endpoints' 0 and 2π). Since this is a ring, we need $\Phi_m(0) = \Phi_m(2\pi)$, as $\phi = 0$ and $\phi = 2\pi$ refer to the same point. So we have

$$\Phi_m(0) = 1 = e^{2im\pi} = \Phi_m(2\pi),$$

which can only be satisfied if m is an integer. The energy eigenvalues are

$$\hat{H}\Phi_m(\phi) = \frac{\hat{L}_z^2}{2I}\Phi_m(\phi) = \frac{(m\hbar)^2}{2I}\Phi_m(\phi) = E_m\Phi_m(\phi).$$

Any general wavefunction $\psi(\phi)$ will be expressed as a linear combination of the eigenfunctions

$$\psi(\phi) = \sum_{m=-\infty}^{m=\infty} a_m \Phi_m(\phi),$$

and the time evolution will add a phase of $\exp(-iE_m t/\hbar)$ to each $\Phi_m(\phi)$

$$\psi(\phi,t) = \sum_{m=-\infty}^{m=\infty} a_m e^{-iE_m t/\hbar} \Phi_m(\phi) = \sum_{m=-\infty}^{m=\infty} a_m e^{im(\phi-m\hbar t/2I)}$$

Note that the a_m are just the coefficients of the fourier series of $\psi(\phi, 0)$.

2. A particle in a spherically symmetric potential is in the following state:

$$\psi(x, y, z) = C(xy + yz + zx)e^{-\alpha r^2}$$

(a) What is the probability that a measurement of L^2 will give

?

(b) If we find l = 2, what are the probabilities of finding m = 2, 1, 0, -1, -2?

Solution

(a) This part of the question can be solved without doing any math. We know that \hat{L}^2 acts only on the angular part of the wavefunction, so we only look at terms in θ and ϕ . What we are going to do is match up these terms with the spherical harmonics $Y_{l,m}$. We know that in spherical coordinates, we have

$$\begin{aligned} x &= r \sin \theta \cos \phi \\ y &= r \sin \theta \sin \phi \\ z &= r \cos \theta. \end{aligned}$$

This means that the xy term will be of the form $\sin^2 \theta(\phi \text{ terms})$, and the yz and xz terms will be of the form $\sin \theta \cos \theta(\phi \text{ terms})$. But, comparing with the expressions for $Y_{l,m}$ (see page 285 in the textbook or this chart), we see that the only $Y_{l,m}$ of these forms are $Y_{2,\pm 2}$ (for $\sin^2 \theta$) and $Y_{2,\pm 1}$ (for $\sin \theta \cos \theta$). So *l* is always 2, and $\hat{L}^2 \psi(x, y, z)$ will give back $6\hbar^2 \psi(x, y, z)$. Thus we have a 0 percent chance of measuring $L^2 = 0$ and a 100 percent chance of measuring $L^2 = 6\hbar^2$.

(b) For this part of the problem, we will have to write out everything in terms of the $Y_{l,m}$. Using

$$\cos \phi = \frac{e^{i\phi} + e^{-i\phi}}{2}$$
; $\sin \phi = \frac{e^{i\phi} - e^{-i\phi}}{2i}$,

we have, looking at just the θ and ϕ terms

$$\frac{\psi(r,\theta,\phi)}{Cr^2e^{-\alpha r^2}} = \sin^2\theta \frac{e^{2i\phi} - e^{-2i\phi}}{4i} + \sin\theta\cos\theta \left(\frac{e^{i\phi} + e^{-i\phi}}{2} + \frac{e^{i\phi} - e^{-i\phi}}{2i}\right) + \frac{e^{i\phi} - e^{-i\phi}}{2i}$$

Note that we used $2\cos\phi\sin\phi = \sin 2\phi$ in the expression above. These are almost in the form of spherical harmonics. What we are missing are the normalizations. Putting them in, and using 1/i = -i, we find that

$$\psi(r,\theta,\phi) = C\sqrt{\frac{2\pi}{15}}r^2 e^{-\alpha r^2} \left(iY_{2,-2} - iY_{2,2} + (i-1)Y_{2,1} + (i+1)Y_{2,-1}\right).$$

First, we note that there is no m = 0 component, so the probability of measuring m = 0 is 0. For the rest, we can compare the square of the coefficients of the $Y_{l,m}$'s to see their relative probabilities. $|i|^2 =$ $|-i|^2 = 1$ and $|i-1|^2 = |i+1|^2 = 2$, so we see that the probability of measuring m = 2 is the same as that of measuring m = -2, and similarly for m = 1 and m = -1. We also see that the probability of measuring $m = \pm 1$ is twice as much as the probability of measuring $m = \pm 2$. Since all the probabilities have to add to one, we see that the probability P_m of measuring m is 1/6 for $m = \pm 2$, 2/6 for $m = \pm 1$ and 0 for m = 0. Note we did not have to find C, because the radial part and angular part of ψ are normalized separately.

3. A system with orbital momentum l = 1 is in the following initial state:

$$|\psi\rangle = \frac{1}{\sqrt{14}} \left(\begin{array}{c} -\sqrt{3} \\ 2\sqrt{2} \\ \sqrt{3} \end{array}\right)$$

- (a) Calculate $\langle L_y \rangle$ if the system is in $l_x = -\hbar$
- (b) Calculate $\langle L_u^2 \rangle$ if the system is in $l_x = -\hbar$
- (c) Calculate ΔL_y if the system is in $l_x = -\hbar$

(d) If we measure L_y with the system in the initial state above, what values will we obtain and with what probabilities?

NOTE: Some of you may have interpreted questions a) through c) as finding either i) $\langle L_z \rangle$, etc. if the system is in $l_y = -\hbar$ or ii) $\langle L_y \rangle$, etc. if the system is in $l_y = -\hbar$. In case i), the answers are the same as those given below. In case ii), we are in an eigenstate of L_y , so the expectation value is just the eigenvalue $-\hbar$, the expectation value of L_y^2 is its square, \hbar^2 , and $\Delta L_y = 0$. If you chose any of these interpretations, you'll be graded based on the pertinent answers.

Solution

It is useful to start out by writing out the matrix representation for \hat{L}_x and \hat{L}_y in the \hat{L}_z basis:

$$\hat{L}_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}; \hat{L}_y = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix}$$

(a) To find the eigenstate $|\phi\rangle$ with $l_x = -\hbar$ in our basis, we use $\hat{L}_x |\phi\rangle = -\hbar |\phi\rangle$, or

$$\hat{L}_x + \hbar \hat{I} |\phi\rangle = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & 1 & 0\\ 1 & \sqrt{2} & 1\\ 0 & 1 & \sqrt{2} \end{pmatrix} |\phi\rangle = 0$$

Just by looking at the top and bottom row, we can see that the first and third components of $|\phi\rangle$ must be equal. Then, from the top row, the second component must be $-\sqrt{2}$ times the first. Normalizing, we get

$$|\phi\rangle = \frac{1}{2} \left(\begin{array}{c} 1\\ -\sqrt{2}\\ 1 \end{array} \right).$$

Now, all that is left is matrix multiplication:

$$\langle \phi | \hat{L}_y | \phi \rangle = \frac{1}{2} (1, -\sqrt{2}, 1) \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1\\ -\sqrt{2}\\ 1 \end{pmatrix} = 0.$$

Note this is the same result we got for $\langle \hat{L}_z \rangle$. This is actually to be expected, since what we call the y axis could easily be relabeled as the z axis (we can do this by rotating about the x axis), without changing the problem (under rotations about the x-axis, eigenstates of L_x pick up a phase). In fact, you'll see we get the same answers for (b) and (c) as well.

(b) First we calculate \hat{L}_y^2 in the matrix representation.

$$\hat{L}_y^2 = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix} \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix} = \frac{\hbar^2}{2} \begin{pmatrix} 1 & 0 & -1\\ 0 & 2 & 0\\ -1 & 0 & 1 \end{pmatrix}.$$

Then, we have, as promised,

$$\langle \phi | \hat{L}_y^2 | \phi \rangle = \frac{1}{2} (1, -\sqrt{2}, 1) \frac{\hbar^2}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix} = \frac{\hbar^2}{2}.$$

(c) $\Delta L_y = \sqrt{\langle L_y^2 \rangle - \langle L_y \rangle^2} = \hbar/\sqrt{2}$

(d) To do this problem, we must expand $|\psi\rangle$ in terms of the eigenvectors of \hat{L}_y . We know that the eigenvalues of \hat{L}_y will be $\hbar, 0$ and $-\hbar$ (eigenvalues are measurable quantities, so regardless of how we choose our axes, the components of **L** must all have the same eigenvalues). Let the corresponding eigenvectors be, respectively, $|1\rangle, |0\rangle$, and $|-1\rangle$. Then

$$\hat{L}_{y} + \hbar \hat{I} | -1 \rangle = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & -i & 0\\ i & \sqrt{2} & -i\\ 0 & i & \sqrt{2} \end{pmatrix} | -1 \rangle = 0$$

$$\hat{L}_{y} | 0 \rangle = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix} | 0 \rangle = 0$$

$$\hat{L}_{y} - \hbar \hat{I} | 1 \rangle = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} -\sqrt{2} & -i\\ 0 & i & -\sqrt{2} \end{pmatrix} | 1 \rangle = 0$$

By inspection we can see that the normalized eigenvectors are

$$|-1\rangle = \frac{1}{2} \begin{pmatrix} -1\\\sqrt{2}i\\1 \end{pmatrix}; |0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}; |1\rangle = \frac{1}{2} \begin{pmatrix} -1\\-\sqrt{2}i\\1 \end{pmatrix}.$$

From this, we can get our probabilities:

$$|\langle \psi| - 1 \rangle|^2 = 1/2; |\langle \psi|0 \rangle|^2 = 0; |\langle \psi|1 \rangle|^2 = 1/2.$$

Thus we will only obtain the values \hbar and $-\hbar$, each with 50 percent probability.

For completion, here is $|\psi\rangle$ in terms of the eigenstates

$$|\psi\rangle = \frac{\sqrt{3}-2i}{\sqrt{14}}|-1\rangle + \frac{\sqrt{3}+2i}{\sqrt{14}}|1\rangle.$$