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Introduction to Quantum Mechanics: Problem Set 5

1. (Textbook 6.13) Consider a free particle of mass µ constrained to move
on a ring of radius a.

(a) Show that the Hamiltonian of this system is

H = L2
z/2I

where the z-axis is through the center O of the ring and is perpendicular
to its plane, and I is the moment of inertia of the particle with respect
to the center O.

(b) Find the energy eigenfunctions for the system and write down a
general expression for the solution of the time-dependent Schrodinger
equation.

Solution

(a) First, we note that the moment of inertia of a particle of mass µ,
with respect to a point O, is given by I = µr2 where r is the distance
from the particle to O. In our case, r is fixed to be the radius of the
circle, so I = µa2. We will now solve the problem in two different ways.

1) Since we are dealing with a free particle, the energy is given by
the kinetic term only: E = µv2/2. The z-component of the angular
momentum is Lz = (r×p) · ẑ = µ(r×v) · ẑ. But, for motion in a circle
in the x-y plane, v and r are perpendicular and their cross product
points in the ẑ direction. Also, the magnitude of r is fixed to be a.
Thus, we find that Lz = µ|r×v| = µva, and we can express the energy
as

E = µv2/2

= µL2
z/2µ

2a2

= L2
z/2µa

2

= L2
z/2I.

So our Hamiltonian operator in the Schrodinger equation will be Ĥ =
L̂2

z/2I.
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2) We note that since the particle is constrained to a circle, this is
just a one dimensional free particle problem. Let x be the distance
traveled on the ring (arc length) from some point, which we will denote
by x = 0. x can take any value between 0 and 2πa, but since 0 and 2πa
are the same point, we demand that ψ(0) = ψ(2πa) for any function
ψ(x). The hamiltonian for a 1-D free particle of mass µ is given by

Ĥ =
p̂2

2µ
= − h̄

2

2µ

d2

dx2

in the x basis. Now, change coordinates from the length x to the angle
φ using x = aφ. Then d2

dx2 = 1
a2

d2

dφ2 , so

Ĥ = − h̄2

2µa2

d2

dφ2
=
L̂2

z

2I
,

where we’ve made use of L̂z = −ih̄ d
dφ

.

(b) Since Ĥ is just a function of L̂z, the eigenfunctions Ĥ and L̂z will
be the same. The eigenfunctions Φm(φ) of L̂z are those that satisfy the
equation

L̂zΦm(φ) = −ih̄dΦm(φ)

dφ
= mh̄Φm(φ).

where we have put in the factor of h̄ explicitly in the eigenvalue, an-
ticipating our result. The solution to this simple differential equation
is

Φm(φ) = eimφ,

for any value of m. However, we have not yet used the boundary
conditions (i.e. conditions at the ’endpoints’ 0 and 2π). Since this is a
ring, we need Φm(0) = Φm(2π), as φ = 0 and φ = 2π refer to the same
point. So we have

Φm(0) = 1 = e2imπ = Φm(2π),

which can only be satisfied if m is an integer. The energy eigenvalues
are

ĤΦm(φ) =
L̂2

z

2I
Φm(φ) =

(mh̄)2

2I
Φm(φ) = EmΦm(φ).

Any general wavefunction ψ(φ) will be expressed as a linear combina-
tion of the eigenfunctions
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ψ(φ) =
m=∞∑

m=−∞
amΦm(φ),

and the time evolution will add a phase of exp(−iEmt/h̄) to each Φm(φ)

ψ(φ, t) =
m=∞∑

m=−∞
ame

−iEmt/h̄Φm(φ) =
m=∞∑

m=−∞
ame

im(φ−mh̄t/2I)

Note that the am are just the coefficients of the fourier series of ψ(φ, 0).

2. A particle in a spherically symmetric potential is in the following state:

ψ(x, y, z) = C(xy + yz + zx)e−αr2

(a) What is the probability that a measurement of L2 will give

i) 0 ?
ii) 6h̄2 ?

(b) If we find l = 2, what are the probabilities of finding m =
2, 1, 0,−1,−2?

Solution

(a) This part of the question can be solved without doing any math.
We know that L̂2 acts only on the angular part of the wavefunction, so
we only look at terms in θ and φ. What we are going to do is match
up these terms with the spherical harmonics Yl,m. We know that in
spherical coordinates, we have

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ.

This means that the xy term will be of the form sin2 θ(φ terms), and the
yz and xz terms will be of the form sin θ cos θ(φ terms). But, comparing
with the expressions for Yl,m (see page 285 in the textbook or this
chart), we see that the only Yl,m of these forms are Y2,±2 (for sin2 θ)

and Y2,±1 (for sin θ cos θ). So l is always 2, and L̂2ψ(x, y, z) will give
back 6h̄2ψ(x, y, z). Thus we have a 0 percent chance of measuring
L2 = 0 and a 100 percent chance of measuring L2 = 6h̄2.

(b) For this part of the problem, we will have to write out everything
in terms of the Yl,m. Using

cosφ =
eiφ + e−iφ

2
; sinφ =

eiφ − e−iφ

2i
,

3

http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
http://en.wikipedia.org/wiki/Table_of_spherical_harmonics


we have, looking at just the θ and φ terms

ψ(r, θ, φ)

Cr2e−αr2 = sin2 θ
e2iφ − e−2iφ

4i
+ sin θ cos θ

(
eiφ + e−iφ

2
+
eiφ − e−iφ

2i

)
.

Note that we used 2 cosφ sinφ = sin 2φ in the expression above. These
are almost in the form of spherical harmonics. What we are missing
are the normalizations. Putting them in, and using 1/i = −i, we find
that

ψ(r, θ, φ) = C

√
2π

15
r2e−αr2

(iY2,−2 − iY2,2 + (i− 1)Y2,1 + (i+ 1)Y2,−1) .

First, we note that there is no m = 0 component, so the probability
of measuring m = 0 is 0. For the rest, we can compare the square of
the coefficients of the Yl,m’s to see their relative probabilities. |i|2 =
| − i|2 = 1 and |i − 1|2 = |i + 1|2 = 2, so we see that the probability
of measuring m = 2 is the same as that of measuring m = −2, and
similarly for m = 1 and m = −1. We also see that the probability of
measuring m = ±1 is twice as much as the probability of measuring
m = ±2. Since all the probabilities have to add to one, we see that the
probability Pm of measuring m is 1/6 for m = ±2, 2/6 for m = ±1 and
0 for m = 0. Note we did not have to find C, because the radial part
and angular part of ψ are normalized separately.

3. A system with orbital momentum l = 1 is in the following initial state:

|ψ〉 =
1√
14

 −
√

3

2
√

2√
3


(a) Calculate 〈Ly〉 if the system is in lx = −h̄
(b) Calculate 〈L2

y〉 if the system is in lx = −h̄
(c) Calculate ∆Ly if the system is in lx = −h̄
(d) If we measure Ly with the system in the initial state above, what
values will we obtain and with what probabilities?

NOTE: Some of you may have intepreted questions a) through c) as
finding either i) 〈Lz〉, etc. if the system is in ly = −h̄ or ii) 〈Ly〉,
etc. if the system is in ly = −h̄. In case i), the answers are the same
as those given below. In case ii), we are in an eigenstate of Ly, so the
expectation value is just the eigenvalue −h̄, the expectation value of L2

y

is its square, h̄2, and ∆Ly = 0. If you chose any of these interpretations,
you’ll be graded based on the pertinent answers.
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Solution

It is useful to start out by writing out the matrix representation for L̂x

and L̂y in the L̂z basis:

L̂x =
h̄√
2

 0 1 0
1 0 1
0 1 0

 ; L̂y =
h̄√
2

 0 −i 0
i 0 −i
0 i 0


(a) To find the eigenstate |φ〉 with lx = −h̄ in our basis, we use L̂x|φ〉 =
−h̄|φ〉, or

L̂x + h̄Î|φ〉 =
h̄√
2


√

2 1 0

1
√

2 1

0 1
√

2

 |φ〉 = 0.

Just by looking at the top and bottom row, we can see that the first
and third components of |φ〉 must be equal. Then, from the top row,
the second component must be −

√
2 times the first. Normalizing, we

get

|φ〉 =
1

2

 1

−
√

2
1

 .
Now, all that is left is matrix multiplication:

〈φ|L̂y|φ〉 =
1

2
(1, −

√
2, 1)

h̄√
2

 0 −i 0
i 0 −i
0 i 0

 1

2

 1

−
√

2
1

 = 0.

Note this is the same result we got for 〈L̂z〉. This is actually to be
expected, since what we call the y axis could easily be relabeled as the
z axis (we can do this by rotating about the x axis), without changing
the problem (under rotations about the x-axis, eigenstates of Lx pick
up a phase). In fact, you’ll see we get the same answers for (b) and (c)
as well.

(b) First we calculate L̂2
y in the matrix representation.

L̂2
y =

h̄√
2

 0 −i 0
i 0 −i
0 i 0

 h̄√
2

 0 −i 0
i 0 −i
0 i 0

 =
h̄2

2

 1 0 −1
0 2 0
−1 0 1

 .
Then, we have, as promised,

〈φ|L̂2
y|φ〉 =

1

2
(1, −

√
2, 1)

h̄2

2

 1 0 −1
0 2 0
−1 0 1

 1

2

 1

−
√

2
1

 =
h̄2

2
.
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(c) ∆Ly =
√
〈L2

y〉 − 〈Ly〉2 = h̄/
√

2

(d) To do this problem, we must expand |ψ〉 in terms of the eigenvec-
tors of L̂y. We know that the eigenvalues of L̂y will be h̄, 0 and −h̄
(eigenvalues are measurable quantities, so regardless of how we choose
our axes, the components of L must all have the same eigenvalues).
Let the corresponding eigenvectors be, respectively, |1〉, |0〉, and | − 1〉.
Then

L̂y + h̄Î| − 1〉 = h̄√
2


√

2 −i 0

i
√

2 −i
0 i

√
2

 | − 1〉 = 0

L̂y|0〉 = h̄√
2

 0 −i 0
i 0 −i
0 i 0

 |0〉 = 0

L̂y − h̄Î|1〉 = h̄√
2

 −
√

2 −i 0

i −
√

2 −i
0 i −

√
2

 |1〉 = 0

By inspection we can see that the normalized eigenvectors are

| − 1〉 =
1

2

 −1√
2i
1

 ; |0〉 =
1√
2

 1
0
1

 ; |1〉 =
1

2

 −1

−
√

2i
1

 .
From this, we can get our probabilities:

|〈ψ| − 1〉|2 = 1/2; |〈ψ|0〉|2 = 0; |〈ψ|1〉|2 = 1/2.

Thus we will only obtain the values h̄ and −h̄, each with 50 percent
probability.

For completion, here is |ψ〉 in terms of the eigenstates

|ψ〉 =

√
3− 2i√

14
| − 1〉+

√
3 + 2i√

14
|1〉.
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