

Outline

- **1. Introduction to Boosted Top Quarks**
- 2. QCD and Top Jets
- 3. Top and Bottom Tagging Algorithms
- **4. Differential Cross Section Measurements**
- 5. Summary & Conclusions

The Top Quark

Unique role

- Heaviest particle
- In SM, strongest coupling to Higgs boson
- A unique role in various extensions
- QCD makes precise predictions for production
 - NNLO predictions exist

Top Quark is Special

Properties

- Most massive fermion
- Decays before hadronization

Large mass also a challenge

- Decay products are energetic
- Difficult to reconstruct top quark decays in pair production

Incandela, Quadt, Wagner & Wicke, Prog.Part.Nucl.Phys.63:239-292,2009

What Are Boosted Top Quarks?

Top quark pair production ubiquitous at LHC

• $\sigma = 832 \pm 51 \text{ pb}$

LHC TOP WG

• At 10³⁴ cm⁻² s⁻¹, this gives a top quark every few seconds

 $p_T\gtrsim 500~GeV$

• Rare – 0.1% of total

Top Quark Pair Production

Each top quark decays weakly

3 possible final states

Focus on the "all-hadronic" mode

- 44% of all decays
- No undetected particles!
- At high p_T, top quark decay reconstructed as a "top jet"

Top Pair Decay Channels

Boosted Top Jets: Precision Measurements

A Very high- P_T Top

Why the Interest in Boosted Tops?

Top quarks play a special role in many models for new physics, eg.

- Couple to new force carriers
 - Leptophobic Z' preferentially decays to top quark pairs Rosner, PLB 387 (1996) 113
 - W' bosons could decay to t-b pair
- String-inspired resonances
 - Randall-Sundrum KK gluons/gravitons (g_{KK}G_{KK}) favourite "wide" resonance

Agashe et al., PRD **77**, 015003 (2008) ; Lillie et al., JHEP **09** (2007) 074

- New phenomena
 - Vector-like top quark partners
 - Supersymmetric top partners

Agular-Saavedra et al, PRD 88, 094010 (2013)

CERN Large Hadron Collider

LHC collides protons at 13 TeV

High luminosity

- 2800 bunches
- 1.2 x 10¹¹ protons per bunch
- Bunch crossings every 25 ns
- L > 10³⁴ cm⁻² s⁻¹

The ATLAS Detector

LHC Data Taking

LHC has run well at 13 TeV

13 TeV data:

- 3.9 fb⁻¹ in 2015
- 32 fb⁻¹ in 2016
- 35 fb⁻¹ in 2017

Collision "pile-up" continued to increase

Mean Number of Interactions per Crossing

We believe there were 17 collisions...

Boosted Top Jets: Precision Measurements

High p_⊤ Top Jets

High p_T top decays seen as single jet

- Use Anti-kt jet algorithm
 - R=1.0 to capture top decay products
 - But sensitive to pile-up
- Calibrate energy and mass scales using in situ techniques

Jet Trimming

Pile-up is removed using "trimming"

- Anti-kT cluster with R=1.0 p_T^{R1.0}
- Anti-kT cluster constituents into R=0.2 "subjets"
- Keep subjets with $pT > 0.05 p_T^{R1.0}$
- Recombine and re-calibrate

Takes care of pile-up

- Also "suppresses"
 Sudakov peak
- Rises slowly with jet p_T

Boosted Top Jets: Precision Measurements

Jet Mass Isn't Everything

Top quark decays are 3-prong

 Light quark and gluon jets with high mass largely single gluon emission

Many strategies considered

- Eight algorithms compared in ATLAS-CONF-2015-036
- Taken a simple approach for "top-tagger"
 - N-subjettiness measure τ₃₂
 - Jet mass cut (122 < m_{jet} < 222 GeV)

1000 Events / 0.06 Data **ATLAS** Preliminary tt (matched) L dt = 20.3 fb⁻¹, \sqrt{s} = 8 TeV tt (not matched) 800 Single top Trimmed Anti-k, R=1.0 W+jets Z + jets Syst. uncertainty 600 Exp. uncertainty Mod. uncertainty 400 200 Data/Sim. 1.5 0.5 0.2 0.4 0.6 0.8 1.2 Large-R jet T₃₂

Thaler & van Tilburg, JHEP 03 (2011) 015; JHEP 02 (2012) 093

B Tagging Algorithms

ATLAS uses a multivariate algorithm to tag "b-jets"

- Combination of tracking, vertex and kinematic information
- Usual operating point of 70% efficiency, <1 % mistag rate

Tagging Pairs of Top Jets

Put together top-tagging and b-tagging

- Require two R=1.0 jets
 - p_{T1} > 500 GeV and p_{T2} > 350 GeV
 - Require both are top-tagged
 - Require both have R=0.4 subjet that is b-tagged
- Reject events with at least one electron or muon candidate

Estimating Backgrounds

Strategy

 Use MC for backgrounds with at least one real top quark jet:

 $t\bar{t}$ (non-all-hadronic)

Single-top-quark

 $t\bar{t}+W/Z/H$

 Use data to estimate "multijet" background

2nd large-R jet	1t1b	J (7.6%)	K (21%)	L (42%)	S			
	0t1b	B (2.2%)	D (5.8%)	H (13%)	N (47%)			
	1t0b	E (0.7%)	F (2.4%)	G (6.4%)	M (30%)			
	0t0b	A (0.2%)	C (0.8%)	I (2.2%)	O (11%)			
		0t0b	1t0b	0t1b	1t1b			

What the Signal Looks Like

Jet mass is best diagnostic

- Clear top jet peak
- Background is flat

$t\overline{t}$ (all-hadronic)	3250 ± 470
$t\bar{t}$ (non-all-hadronic)	200 ± 40
Single-top-quark	24 ± 12
$t\bar{t}$ + $W/Z/H$	33 ± 10
Multijet events	810 ± 50
Prediction	4320 ± 530
Data (36.1fb^{-1})	3541

Kinematics of Events

Event properties

- Rapidly falling vs p_T
- Back-to-back pair production
- Centrally produced

Affected by acceptance & efficiency

- Correct by "unfolding" distributions
- Measure normalized differential cross sections vs. 13 variables

$$\frac{1}{\sigma^{fid}}\frac{d\sigma^{fid}}{dX_i}$$

Unfolding to Particle Level

Define a "fiducial phase space":

- Large-R jet $p_T^{t,1}$ > 500 GeV
- Large-R jet $p_T^{t,2}$ > 350 GeV
- Each associated with b-tag

Use a Bayesian unfolding procedure to correct for acceptance & efficiency

$$\frac{d\sigma^{\text{fid}}}{dX^{i}} \equiv \frac{1}{\int \mathcal{L} dt \cdot \Delta X^{i}} \cdot \frac{1}{\epsilon_{\text{eff}}^{i}} \cdot \sum_{j} \mathcal{M}_{ij}^{-1} \cdot f_{\text{acc}}^{j} \cdot \left(N_{\text{reco}}^{j} - N_{\text{bg}}^{j}\right)$$

Systematic Uncertainties

Estimate systematic uncertainties

- Based on studies of data samples
- Modelling uncertainties come from MC comparisons
- Incorporated using Bayesian priors

	Source	Percentage
 	Large- R jet energy scale	5.9 🗲
	Large- R jet mass calibration	1.4
	Large- R jet top-tagging	12 🖊
	Small-R jets	0.3
	Pileup	0.6
	Flavor tagging	8.3 🗲
	Background	0.9
	Luminosity	2.0
	Monte Carlo statistical uncertainty	0.9
	Alternative hard-scattering model	11 🛑
	Alternative parton-shower model	14 🖊
	ISR/FSR + scale	1.1
	Total systematic uncertainty	24
	Data statistical uncertainty	2.3
	Total uncertainty	24

Total Cross Section Measurement

Compare with different matrixelement calculations

- POWHEG
 - Pythia v8 parton shower + hadronization
 - Herwig v7 parton shower +
 hadronization
- MG5_aMC@NLO
 - Pythia v8 parton shower + hadronization
 - Herwig v7 parton shower + hadronization
- SHERPA 2.2.1

Unfolding Results: Leading Top Jet

Unfolding Results: Cosθ* & m^{tt}

Unfold to Parton-Level

Repeat the procedure, unfolding to parton-level

Allows for direct comparison with NLO and NNLO calculations

Boosted Top Jets: Precision Measurements

Compare with Theory Predictions

Generally good agreement

Several differences in differential cross sections

- Rapidity distribution of top jets broader
- p_T of top-pair system softer
- χ^{tt} distribution


```
\chi^{t\overline{t}} \equiv \exp(|y^{t,1} - y^{t,2}|)
```

Boosted Top Jets: Precision Measurements

Perform 1-D chisq Tests

Table 4: Comparison between the measured normalized particle-level fiducial phase-space differential crosssections and the predictions from several SM event generators. For each variable and prediction, a χ^2 and a *p*-value are calculated using the covariance matrix described in the text, which includes all sources of uncertainty. The number of degrees of freedom (NDF) is equal to $N_b - 1$, where N_b is the number of bins in the distribution.

Observable	PWG+PY8		AMC@NLO +PY8 PWG+H7		DWG U7		PWG+PY8		PWG+PY8		Surpp. 2.2.1	
Observable					(more IFSR)		(less IFSR)		SHEKPA 2.2.1			
	χ^2 /NDF	p-value	χ^2 /NDF	p-value	χ^2 /NDF	p-value	χ^2/NDF	p-value	χ^2/NDF	p-value	χ^2 /NDF	p-value
$p_{\mathrm{T}}^{t,1}$	7.7/7	0.36	8.2/7	0.32	8.0/7	0.33	9.1/7	0.24	8.7/7	0.27	9.3/7	0.23
$ y^{i,1} $	7.5/5	0.18	12.2/5	0.03	6.8/5	0.24	8.8/5	0.12	8.1/5	0.15	4.0/5	0.55
$p_{\rm T}^{t,2}$	8.6/6	0.20	2.6/6	0.86	9.9/6	0.13	12.2/6	0.06	5.0/6	0.54	5.0/6	0.55
y ^{1,2}	3.7/5	0.59	4.6/5	0.46	3.1/5	0.68	3.5/5	0.63	3.2/5	0.67	2.9/5	0.72
$m^{t\bar{t}}$	4.5/9	0.88	4.7/9	0.86	4.0/9	0.91	5.3/9	0.81	5.2/9	0.82	10.0/9	0.35
$p_{\mathrm{T}}^{t\bar{t}}$	7.8/5	0.17	20.9/5	< 0.01	12.6/5	0.03	15.0/5	0.01	1.9/5	0.86	1.9/5	0.87
y ¹	1.1/5	0.95	2.2/5	0.83	0.9/5	0.97	0.8/5	0.98	1.8/5	0.88	1.7/5	0.89
$\chi^{\bar{a}}$	14.2/6	0.03	12.7/6	0.05	13.6/6	0.03	16.9/6	< 0.01	10.1/6	0.12	18.5/6	< 0.01
$y_{\rm B}^{t\bar{t}}$	2.5/6	0.87	3.3/6	0.77	2.2/6	0.90	2.6/6	0.86	2.8/6	0.84	3.0/6	0.81
$P_{out}^{i\bar{i}}$	1.9/6	0.93	53.1/6	< 0.01	3.1/6	0.80	4.2/6	0.64	4.8/6	0.57	5.9/6	0.44
$\Delta \phi^{\pi}$	0.9/3	0.84	16.3/3	< 0.01	2.0/3	0.58	3.0/3	0.40	0.6/3	0.89	3.4/3	0.33
$H_{\mathrm{T}}^{\bar{a}}$	4.8/6	0.57	5.2/6	0.52	4.5/6	0.61	5.0/6	0.54	5.0/6	0.55	3.1/6	0.80
$\cos \theta^*$	9.9/5	0.08	10.5/5	0.06	9.3/5	0.10	12.8/5	0.03	6.5/5	0.26	18.7/5	< 0.01

More Observations

Efficiency sensitive to hadronization – 10-15%

- Discovered that T₃₂ most sensitive
- Directly affects the efficiency of top-tagging

Models predict harder top jet spectrum

 Confirms measurements at lower p_T

JHEP 11 (2017) 191

Moving to Greater Precision

Increase data sample

- Working with 2017 data
 → x2 increase
- Started collisions last week
 → another x2?
- Measure doubly-differential cross sections

Systematic uncertainties

- B-tagging using top mass as a tool to constrain uncertainty
- Parton-shower & hadronization
 - Exploring the difference in models
 - Improve the models and/or make tagging less sensitive to differences?
- ME modelling
 - Ongoing effort with MC developers to understand POWHEG and aMC@NLO differences

Summary and Conclusions

Completed first differential cross-section measurement using boosted top jets

- Exploring mass scales > 2 TeV
- Revealed generally good agreement with QCD predictions
- Softer production than expected
- More top pairs at large angles

Discriminating between theory predictions

 Focuses activity on understanding physics differences

Expect to make improved measurements over next 2 years

BackUp Stuff

Addressing Pile-Up

Jets are extended objects

 Contributions from additional interactions have significant effect on observed properties

Various strategies to address

- Correct with average calibration
 - Only used at Tevatron, and never on jet substructure
- Correct event-by-event
 - Works OK but cumbersome
- Can "cut-out" pile-up contributions
 - This is method of choice
 - Requires careful calibration

Tau₃₂ Modelling

$$\tau_{3} = \frac{1}{d_{0}} \sum_{k=1}^{3} p_{Tk} \times \min(\delta_{1k}, \delta_{2k}, \delta_{3k})$$

$$\tau_{2} = \frac{1}{d_{0}} \sum_{k=1}^{2} p_{Tk} \times \min(\delta_{1k}, \delta_{2k})$$

$$d_{0} = \sum_{k=1}^{3} p_{Tk} \times R$$

Thaler & van Tilburg, JHEP 03 (2011) 015; JHEP 02 (2012) 093

Current Choice of Algorithms

Looked at algorithm with 2 variables:

Optimitized for jets with $p_T > 500$ GeV,

- M_{jet} > 125 GeV
- T₃₂ > 0.58

Boosted Top Jets: Precision Measurements

Aside: Trimming Cuts Out QCD Too

Trimming removes part of the QCD jet as well

- Current parameters remove 100 GeV subjet for a 1 TeV object!
- Requires good fragmentation models in order to calibrate correctly
- Competing schemes for this
 - Mass-drop
 - C/A clustering
- Optimizing f_{cut} and R_{sub} remain open questions

