Beam Monitoring using CVD Diamond Sensors

1. Signal collection in CVD diamond
2. The Current State of the art in Diamond sensors
3. Diamond beam monitors in large pion fluxes
4. Diamond monitors at PEP-II/SLAC
5. Progress on monitors for KEK

William Trischuk
University of Toronto/RD42
July 31, 2003
CVD Diamond Sensor Operating Principle

- Diamond sensor works like
 - A solid-state ionisation chamber

- Resistivity so high, leakage current typically μA
 - No need reverse biasing
 - No need to implant diodes etc.
Diamond Sensor Characterisation

- Characterise diamond sensors with bench-top setup
 - ^{90}Sr electrons $\frac{dE}{dx} \approx 1.08$ minimum ionising

- Typical signals look like

- (Side A) +ve electric field, (Side B) -ve electric field)
Signals Seen from Diamond Sensors

- The signal as a function of applied bias voltage

- Signal increases linearly (drift velocity $\approx E$)

- Approaching 1 V/\(\mu\)m carrier mobility $\approx 1/E$
 - Carrier velocity plateaus
 - Signal, due to image charge motion, saturates

- Typically operate diamond sensors at about 1V/\(\mu\)m
 - 300 to 400 V across 300 \(\mu\)m thick sensors
The RD42 Project at CERN

- RD42 established to demonstrate
 - CVD diamond sensors rad hard alternative for LHC MIP detectors
 - This resulted in a series of goals
 1. Signal sizes exceeding $7000\,e$ for MIPs
 2. Radiation tolerance beyond $10^{15}/\,\text{cm}^2$
 3. Signal formation times of a ns

- We have met these goals
Particle Detector Prototypes

- A wide variety of particle detector prototypes
 - Strip trackers (ref: NIM A354, 318 (1995))
 - Bump-bonded hybridised pixel detectors (ref: NIM A436, 326 (1999))

- Reasonable efficiencies and position resolutions
Other Results from RD42

- Using state of the art samples in 1994
 - Irradiated samples to 3×10^{14} pions/cm2
 - Involved beam fluxes of 10^7 pions/cm2/s

- Shows current in sensors during irradiation
 - Silicon: dominated by leakage due to damage
 - Diamond: proportional to pion flux

- Ref: CERN-PPE 95-173, submitted to NIM ...
Beam Monitors at PEP-II (Photos from H.Kagan, OSU)

- Have installed a series of CVD sensors around BaBar at PEP-II (Fall 2002)

- Simple pad sensors
Beam Monitors in BaBar

- Schematic of monitor package

- And how they look near the BaBar IR
Steady Datataking from PEP-II

- Extended data taking period
Fast Abort Signal at PEP-II

- Captured a beam abort on a digital scope
 - Red is diamond
 - Black is damaged silicon
Location of Monitors in Belle

- Plan to install similar sensors in Belle
Packaging for Belle
A Finished Belle Monitor Package
Plans for Further Beam Monitoring

- Sensors installed around BaBar IR
 - Now working reliably
 - Tagging beam dumps triggered by silicon
 - Plans to install monitors elsewhere around ring
 * Learning about time-structure of PEP-II beams
 * Developing rad-hard time-sensitive readout
 * May install similar sensors in beam dump

- Install similar sensors at Belle/KEK in late August