Summer Student Position (2012)

"Superconducting Radio Frequency particle accelerator cavity design/testing "

Profs. Robert S. Orr and William Trischuk or

While the current generation of collider physics experiments relies on extensive arrays of superconducting magnets to trap the particles, keep them orbiting and bring them into collision the next generation of experiments will rely on similarly extensive arrays of superconducting radio frequency (SRF) cavities to provide high-field, cost-effective acceleration to energies of 1 TeV (or higher).

Our group is collaborating with TRIUMF and a Canadian manufacturer to develop SRF cavities for use in a low energy accelerator for use in radioactive isotope production on the TRIUMF campus (the eLINAC ), but also an upgrade to the injector for CERN's large hadron collider and ultimately for a next generation electron positron collider: the ILC . Over the past year, we have developed a novel ``second sound'' detector that can be used to triangulate acoustic signals generated by quenches of the SRF cavities caused by manufacturing defects of impurities. We described these detectors at the 2011 Congress of the Canadian Association of Physicists. These detectors have been used in the test cryostats at TRIUMF, and we expect to perform extensive tests this summer. At Toronto, we are also developing a system to measure the millikelvin temperature rises, at the surface of the cavities, associated with the onset of electron field emission.
We have an opening for a summer-student to work in our group this summer. There may also be the opportunity for the student to work on the cavity field simulations and spend a week or two at TRIUMF during a prototype cavity test.