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Systematic uncertainties in high energy physics and astrophysics are often significant contributions to the

overall uncertainty in a measurement, in many cases being comparable to the statistical uncertainties. However,

consistent definition and practice is elusive, as there are few formal definitions and there exists significant

ambiguity in what is defined as a systematic and statistical uncertainty in a given analysis. I will describe

current practice, and recommend a definition and classification of systematic uncertainties that allows one to

treat these sources of uncertainty in a consistent and robust fashion. Classical and Bayesian approaches will be

contrasted.

1. Introduction to Systematic
Uncertainties

Most measurements of physical quantities in high
energy physics and astrophysics involve both a statis-
tical uncertainty and an additional “systematic” un-
certainty. Sytematic uncertainties play a key role in
the measurement of physical quantities, as they are of-
ten of comparable scale to the statistical uncertainties.
However, as I will illustrate, the definition of these two
sources of uncertainty in a measurement is in practice
not clearly defined, which leads to confusion and in
some cases incorrect inferences. A coherent approach
to systematic uncertainties is, however, possible and I
will attempt to outline a framework to achieve this.

Statistical uncertainties are the result of stochastic
fluctations arising from the fact that a measurement
is based on a finite set of observations. Repeated mea-
surements of the same phenomenon will therefore re-
sult in a set of observations that will differ, and the
statistical uncertainty is a measure of the range of this
variation. By definition, statistical variations between
two identical measurements of the same phenomenon
are uncorrelated, and we have well-developed theories
of statistics that allow us to predict and take account
of such uncertainties in measurement theory, in infer-
ence and in hypothesis testing (see, for example, [1]).
Examples of statistical uncertainties include the finite
resolution of an instrument, the Poisson fluctations
associated with measurements involving finite sample
sizes and random variations in the system one is ex-
amining.

Systematic uncertainties, on the other hand, arise
from uncertainties associated with the nature of the
measurement apparatus, assumptions made by the
experimenter, or the model used to make inferences
based on the observed data. Such uncertainties are
generally correlated from one measurement to the
next, and we have a limited and incomplete theoreti-
cal framework in which we can interpret and acccom-
modate these uncertainties in inference or hypothesis
testing. Common examples of systematic uncertainty

include uncertainties that arise from the calibration of
the measurement device, the probability of detection
of a given type of interaction (often called the “accep-
tance” of the detector), and parameters of the model
used to make inferences that themselves are not pre-
cisely known. The definition of such uncertainties is
often ad hoc in a given measurement, and there are
few broadly-accepted techniques to incorporate them
into the process of statistical inference.

All that being said, there has been significant
thought given to the practical problem of how to incor-
porate systematic uncertainties into a measurement.
Examples of this work include proposals to combine
statistical and systematic uncertainties into setting
confidence limits on measurements [2, 3, 5, 6], tech-
niques to estimate the magnitude of systematic uncer-
tainties [4], and the use of standard statistical tech-
niques to take into account systematic uncertainties
[7, 8]. In addition, there have been numerous papers
published on the systematic uncertainties associated
with a given measurement [9].

In this review, I will first discuss a few case studies
that illustrate how systematic uncertainties enter into
some current measurements in high energy physics
and astrophysics. I will then discuss a way in which
one can consistently identify and characterize system-
atic uncertainties. Finally, I will outline the various
techniques by which statistical and systematic uncer-
tainties can be formally treated in measurements.

2. Case Studies

2.1. W Boson Cross Section: Definitions
are Relative

The production of the charged intermediate vector
boson, the W , in proton-antiproton (pp̄) annihilations
is predicted by the Standard Model, and the measure-
ment of its rate is of interest in high energy physics.
This measurement involves counting the number of
candidate events in a sample of observed interactions,
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Nc, estimating the number of “background” events in
this sample from other processes, Nb, estimating the
acceptance of the apparatus including all selection re-
quirements used to define the sample of events, ε, and
counting the number of pp̄ annihiliations, L. The cross
section for W boson production is then

σW =
Nc − Bb

εL
. (1)

The CDF Collaboration at Fermilab has recently
performed such a measurement [10], as illustrated in
Fig. 1 where the transverse mass of a sample of candi-
date W → eνe decays is illustrated. The measurement
is quoted as

σW = 2.64 ± 0.01(stat) ± 0.18(syst) nb, (2)

where the first uncertainty reflects the statistical un-
certainty arising from the size of the candidate sam-
ple (approximately 38,000 candidates) and the second
uncertainty arises from the background subtraction in
Eq. (1). We can estimate these uncertainties as

σstat = σ0/
√

Nc (3)

σsyst = σ0

√

(

δNb

Nb

)2

+

(

δε

ε

)2

+

(

δL

L

)2

, (4)

where the three terms in σsyst are the uncertainties
arising from the background estimate δNb, the ac-
ceptance δε and the integrated luminosity δL. The
parameter σ0 is the measured value.

In the same sample, the experimenters also observe
the production of the neutral intermediate vector bo-
son, the Z. Because of this, the experimenters can
measure the acceptance ε by taking a sample of Z
bosons identified by the two charged electrons they
decay into, and then measuring ε from this sample.
The dominant undertainty in this measurement arises
from the finite statistics in the Z boson sample. Thus,
one could equivalently consider δε to be a statistical
uncertainty (and not a systematic one). This means
that the uncertainties could have just as well been de-
fined as

σstat = σ0

√

1/Nc +

(

δε

ε

)2

(5)

σsyst = σ0

√

(

δNb

Nb

)2

+

(

δL

L

)2

. (6)

resulting in a different assignment of statistical and
systematic uncertainties.

Why would this matter? If we return back to our
original discussion of what defines a statistical and
systematic uncertainty, we normally assume a system-
atic uncertainty is correlated with subsequent mea-
surements and it does not scale with the sample size.
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Figure 1: The transverse mass distribution for the W

boson candidates as observed recently by CDF. The peak
reflects the Jacobian distribution typical of W boson
decays. The points are the measured distribution and the
various histograms are the predicted distribution from W

decays and the other background processes.

In this case, the uncertainty on ε does not meet these
requirements. The acceptance is a stochastic variable,
which will become better known with increasing Z bo-
son sample size. It is therefore more informative to
identify it as a statistical uncertainty. I will call this a
“class 1” systematic uncertainty. Note that it would
be appropriate to include in this category those sys-
tematic uncertainties that are in fact constrained by
the result of a separate measurement, so long as the
resulting uncertainty is dominated by the stochastic
fluctuations in the measurement. An example of this
could be the calibration constants for a detector that
are defined by separate measurements using a calibra-
tion procedure whose precision is limited by statistics.

2.2. Background Uncertainty

The second case study also involves the measure-
ment of σW introduced in the previous section. The
estimate of the uncertainty on the background rate
δNb is performed by evaluating the magnitude of the
different sources of candidate events that satisfy the
criteria used to define the W boson candidate sample.
In the CDF measurement, it turns out that the back-
ground is dominated by events that arise from the pro-
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Isolation vs. Missing Transverse Energy
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Figure 2: The distribution of the isolation fraction of the
lepton candidate versus the missing energy in the event.
Candidate leptons are required to have low isolation
fractions (< 0.10), and QCD background events
dominate the region with low missing transverse energy.
The signal sample is defined by the requirement
6ET > 25 GeV. The QCD background in the sample is
estimated by the formula in the figure, which assumes
that the isolation properties of the QCD events are
uncorrelated with the missing transverse energy.

duction of two high-energy quarks or gluons (so-called
“QCD events”), one of which “fakes” an electron or
muon. A reliable estimate of this background is diffi-
cult to make from first principles, as the rate of such
QCD events is many orders of magnitude larger than
the W boson cross section, and the rejection power of
the selection criteria is difficult to measure directly.

The technique used to estimate Nb in the CDF anal-
ysis is to take advantage of a known correlation: can-
didate events from QCD background will have more
particles produced in proximity to the electron or
muon candidate. At the same time, most of the QCD
events will also have small values of missing transverse
energy (6ET ) compared with the W boson events where
a high-energy neutrino escapes undetected. Thus, a
measure of the isolation of the candidate lepton and
the 6ET can be an instrument to extract an estimate of
the background in the observed sample. This is shown
in Fig. 2, where one sees in the bottom-right region
the signal region for this analysis. The region with
low missing transverse energy is populated by QCD
background events.

The dominant uncertainty in the background cal-
culation arises from the assumption that the isolation
properties of the electron candidate in QCD events
is uncorrelated with the missing transverse energy in
the event. Any such correlation is expected to be very
small, and this is consistent with other observations.
However, even a small correlation in these two vari-
ables results in a bias in the estimate of Nb. This
potential bias is difficult to estimate with any preci-
sion. In this case, the experimenters varied the choice
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Figure 3: The variation of the background estimate as
the isolation cut value is varied from 0.3 (the default
value) up to 0.8. The isolation variable is a measure of
the fraction of energy observed in a cone near the
electron candidate normalized to the energy of the
electron candidate.

of the isolation criteria to define the QCD background
region and the signal region, and used the variation
in the background estimate as a measure of the sys-
tematic uncertainty δNb. This variation is shown in
Fig. 3.

This is an illustration of a systematic uncertainty
that arises from one’s limited knowledge of some fea-
tures of the data that cannot be constrained by ob-
servations. In these cases, one often is forced to make
some assumptions or approximations in the measure-
ment procedure itself that have not been verified pre-
cisely. The magnitude of the systematic uncertainty
is also difficult to estimate as it is not well-constrained
by other measurements. In this sense, it differs from
the class 1 systematic uncertainties introduced above.

I will therefore call this a “class 2” systematic un-
certainty. It is one of the most common categories
of systematic uncertainty in measurements in astro-
physics and high energy physics.

2.3. Boomerang CMB Analysis

My third case study involves the analysis of the
data collected by the Boomerang cosmic microwave
background (CMB) probe, which mapped the spatial
anisotropy of the CMB radiation over a large portion
of the southern sky [11]. The data itself is a fine-
grained two-dimensional plot of the spatial variation
the temperature of part of the southern sky, as illus-
trated in Fig. 4. The analysis of this data involves the
transformation of the observed spatial variation into
a power series in spherical harmonics, with the spatial
variations now summarized in the power spectrum as
a function of the order of the spherical harmonic. The
power spectrum includes all sources of uncertainty, in-
cluding instrumental effects and uncertainties in cali-
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brations.1

The Boomerang collaborators then test a large class
of theoretical models of early universe development by
determining the power spectrum predicted by each
model and comparing the predicted and observed
power as a function of spherical harmonic. These
models are described by a set of cosmological param-
eters, each of them being constrained by other ob-
servations and theoretical assumptions. To determine
those models that best describe the data, the experi-
menters take a Bayesian approach [12], creating a six-
dimensional grid consisting of 6.4 million points, and
calculating the likelihood function for the data at each
point. They then define priors for each of the six pa-
rameters, and define a posterior probability that is
now a function of these parameters. To make infer-
ences on such key parameters as the age of the uni-
verse or its overall energy density, a marginalization
is performed by numerically integrating the posterior
probability over the other parameters. The experi-
menters can also consider the effect of varying the
priors to explore the sensitivity of their conclusions
to the priors themselves.

In this analysis, the lack of knowledge in the
paradigm used to make inferences from the data is
captured in the choice of priors for each of the pa-
rameters. A classical statistical approach could have
equivalently defined these as sources of systematic un-
certainty. Viewed from either perspective, the uncer-
tainties that arise from the choice of paradigm are not
statistical in nature, given that they would affect any
analysis of similar data. Yet they differ from the two
previous classes of systematic uncertainty I have iden-
tified, which arise directly from the measurement tech-
nique. I therefore define such theoretically-motivated
uncertainties as “class 3” systematics. I also note that
the Bayesian technique to incorporate these uncer-
tainties has no well-defined frequentist analogue, in
that one cannot readily identify an ensemble of exper-
iments that would replicate the variation associated
with these uncertainties.

The distinction between class 2 and class 3 system-
atics comes in part from the fact that one is associated
with the measurement technique while the other arises
in the interpretation of the observations. I argue, how-
ever, that there is an additional difference: In the first
case, there is a specific piece of information needed to
complete the measurement, the background yield Nb,
and the systematic uncertainty arises from manner in
which that is estimated. In the other case, the exper-
iment measures the spatial variation in the CMB and
summarizes these data in the multipole moments. The

1The uncertainties associated with instrumental effects and

calibrations are also systematic in nature, but we will not focus

on these here.

Figure 4: The temperature variation of the CMB as
measured by the Boomerang experiment. The axes
represent the declination and azimuth of the sky, and the
contour is the region used in the analysis.

systematic uncertainties that are associated with the
subsequent analysis of these data in terms of cosmo-
logical parameters is very model-dependent, and the
systematic uncertainties arise from the attempt to ex-
tract information about a subset of the parameters in
the theory (for example, the age of the universe or the
energy density).

2.4. Summary of Taxonomy

In these case studies, I have motivated three classes
of systematic uncertainties. Class 1 systematics are
uncertainties that can be constrained by ancillary
measurements and can therefore be treated as sta-
tistical uncertainties. Class 2 systematics arise from
model assumptions in the measurement or from poorly
understood features of the data or analysis technique
that introduce a potential bias in the experimental
outcome. Class 3 systematics arise from uncertainties
in the underlying theoretical paradigm used to make
inferences using the data.

The advantages of this taxonomy are several. Class
1 systematics are statistical in nature and will there-
fore naturally scale with the sample size. I recommend
that they be properly considered a statistical uncer-
tainty and quoted in that manner. They are not corre-
lated with independent measurements and are there-
fore straightforward to handle when combining mea-
surements or making inferences. Class 2 systematics
are the more challenging category, as they genuinely
reflect some lack of knowledge or uncertainty in the
model used to analyze the data. Because of this, they
also have correlations that should be understood in
any attempt to combine the measurement with other
observations. They also do not scale with the sam-
ple size, and therefore may be fundamental limits on
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how well one can perform the measurement. Class 3
systematics do not depend on how well we understand
the measurement per se, but are fundamentally tied to
the theoretical model or hypothesis being tested. As
such, there is significant variation in practice. As is
illustrated in the third case study and as I will discuss
below, a Bayesian approach allows for a range of pos-
sible models to be tested if one can parametrize the
uncertainties in the relevant probability distribution
function and then define reasonable priors. A purely
frequentist approach to this problem founders on how
one would define the relevant ensemble.

3. Estimation of Systematic
Uncertainties

There is little, if any, formal guidance in the lit-
erature for how to define systematic uncertainties or
estimate their magnitudes, and much of current prac-
tice has been defined by informal convention and “oral
tradition.” A fundamental principle, however, is that
the technique used to define and estimate a system-
atic uncertainty should be consistent with how the
statistical uncertainties are defined in a given mea-
surement, since the two sources of uncertainty are of-
ten combined in some way when the measurement is
compared with theoretical predictions or independent
measurements.

Perhaps the most challenging aspect of estimating
systematic uncertainties is to define in a consistent
manner all the relevant sources of systematic uncer-
tainty. This requires a comprehensive understanding
of the nature of the measurement, the assumptions
implicit or explicit in the measurement process, and
the uncertainties and assumptions used in any theo-
retical models used to interpret the data. In any ro-
bust design of an experiment, the experimenters will
anticipate all sources of systematic uncertainty and
should design the measurement to minimize or con-
strain them appropriately. Good practice suggests
that the analysis of systematic uncertainties should be
based on clear hypotheses or models with well-defined
assumptions.

In the process of the measurement, it is often typ-
ical to make various “cross-checks” and tests to de-
termine that no unanticipated source of systematic
uncertainty has crept into the measurement. A cross-
check, however, should not be construed as a source
of systematic uncertainty (see, for example the discus-
sion in [4]).

A common technique for estimating the magnitude
of systematic uncertainties is to determine the max-
imum variation in the measurement, ∆, associated
with the given source of systematic uncertainty. Argu-
ments are then made to transform that into a measure
that corresponds to a one standard deviation measure

that one would associate with a Gaussian statistic,
with typical conversions being ∆/2 and ∆/

√
12, the

former being argued as a deliberate overestimate, and
the latter being motivated by the assumption that the
actual bias arising from the systematic uncertainty
could be anywhere within the interval ∆. Since it
is common in astrophysics and high energy physics
to quote 68% confidence level intervals as statistical
uncertainties, it therefore is appropriate to estimate
systematic uncertainties in a comparable manner.

There are various practices that tend to over-
estimate the magnitude of systematic uncertainties,
and these should be avoided if one is to not dilute
the statistical power of the measurement. A common
mistake is to estimate the magnitude of a systematic
uncertainty by using a shift in the measured quantity
when some assumption is varied in the analysis tech-
nique by what is considered the relevant one standard
deviation interval. The problem with this approach is
that often the variation that is observed is dominated
by the statistical uncertainty in the measurement, and
any potential systematic bias is therefore obscured. In
such cases, I recommend that either a more accurate
procedure be found to estimate the systematic uncer-
tainty, or at the very least that one recognize that
this estimate is unreliable and likely to be an overes-
timate. A second common mistake is to introduce a
systematic uncertainty into the measurement without
an underlying hypothesis to justify the concern. This
is often the result of confusing a source of systematic
uncertainty with a “cross check” of the measurement.

4. The Statistics of Systematic
Uncertainties

A reasonable goal in any treatment of systematic
uncertainties is that consistent and well-established
procedures be used that allow one to understand how
to best use the information embedded in the system-
atic uncertainty when interpreting the measurement.
Increasingly, the fields of astrophysics and high energy
physics have developed more sophisticated approaches
to interval estimation and hypothesis testing. Fre-
quentist approaches have returned to the fundamen-
tals of Neyman constructions and the resulting cov-
erage properties. Bayesian approaches have explored
the implications of both objective and subjective pri-
ors, the nature of inference and the intrinsic power
embedded in such approaches when combining infor-
mation from multiple measurements.

I will outline how systematic uncertainties can be
accommodated formally in both Bayesian and fre-
quentist approaches.
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4.1. Formal Statement

To formally state the problem, assume we have a
set of observations xi, i = 1, n, with an associated
probability distribution function p(xi|θ), where θ is
an unknown random parameter. Typically, we wish
to make inferences about θ. Let us now assume that
there is some additional uncertainty in the probability
distribution function that can be described with an-
other unknown parameter λ. This allows us to define
a likelihood function

L (θ, λ) =
∏

i

p(xi|θ, λ). (7)

Formally, one can treat λ as a “nuisance parame-
ter.” In many cases (especially those associated with
class 1 systematics), one can identify a set of addi-
tional observations of a random statistic yj , j = 1, m
that provides information about λ. In that case, the
likelihood would become

L (θ, λ) =
∏

i,j

p(xi, yj |θ, λ). (8)

With this formulation, one sees that one has to find
a means of taking into account the uncertainties that
arise from the presence of λ in order to make inferences
on θ. I will discuss some possible approaches.

4.2. Bayesian Approach

A Bayesian approach would involve identification of
a prior, π(λ), that characterizes our knowledge of λ.
Typical practice has been to either assume a flat prior
or, in cases where there are corollary measurements
that give us information on λ, a Gaussian distribution.
One can then define a Bayesian posterior probability
distribution

L (θ, λ) π(λ) dθdλ, (9)

which we can then marginalize to set Bayesian credi-
bility intervals on θ.

This is a straightforward statistical approach and
results in interval estimates that can readily be in-
terpreted in the Bayesian context. The usual issues
regarding the choice of priors remains, as does the in-
terpretation of a Bayesian credibility interval. These
are beyond the scope of this discussion, but are cov-
ered in most reviews of this approach [12].

4.3. Frequentist Approach

The frequentist approach to the formal problem
also starts with the joint probability distribution
p(xi, yj |θ, λ). There are various techniques for how
to deal with the presence of the nuisance parameter
λ, and I will outline just a few of them. I will note

that there isn’t a single commonly adopted strategy in
the literature, and even the simplest techniques tend
to involve significant computational burden.

One technique involves identifying a transformation
of the parameters to factorize the problem in such a
manner that one can then integrate out one of the two
parameters [13]. This approach is robust and theo-
retically sound, and in the trivial cases results in a
1-dimensional likelihood function that now incorpo-
rates the uncertainties arising from the nuisance pa-
rameter. It has well-defined coverage properties and
a clear frequentist interpretation. However, this ap-
proach is of limited value given that it is necessary to
find an appropriate transformation.

I note that this approach is only of value in cases
where one is dealing with a class 1 systematic un-
certainty that is, as I have argued above, formally a
source of statistical uncertainty. Class 2 and class 3
systematic uncertainties cannot be readily constrained
by a set of observations represented by the yj , j =
1, m.

A second approach to the incorporation of nui-
sance parameters is to define Neyman “volumes” in
the multi-dimensional parameter space, equivalent to
what is done in the case of a interval setting with one
random parameter. In this case, one creates an infinite
set of two dimensional contours defined by requiring
that the observed values lie within the contour the
necessary fraction of the time (say 68%). Then one
identifies the locus of points in this two-dimensional
space defined by the centres of each contours, and this
boundary becomes the multi-dimensional Neyman in-
terval for both parameters, as illustrated in Fig. 5. To
“eliminate” the nuisance parameter, one projects the
two-dimensional contour onto the axis of the parame-
ter of interest. This procedure results in a frequentist
confidence interval that over-covers, and in some cases
over-covers badly. It thus results in “conservative” in-
tervals that may diminish the statistical power of the
measurement.

A third technique to take into account systematic
uncertainties involves what is commonly called the
“profile method” where one eliminates the nuisance
parameter by creating a profile likelihood defined as
the value of the likelihood maximized by varying λ
for each value of the parameter θ [14]. This creates
a likelihood function independent of λ, but one that
has ill-defined coverage properties that depend on the
correlation between λ and θ. However, it is a straight-
forward technique, that is used frequently and that re-
sults in inferences that are at some level conservative.

A variation on these techniques has been used in
recent analyses of solar neutrino data, where the anal-
ysis uses 81 observables and characterizes the various
systematic uncertainties by the introduction of 31 pa-
rameters [15]. They linearize the effects of the system-
atic parameters on the chi-squared function and then
minimize the chi-squared with respect to each of the
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Figure 5: The Neyman construction for two parameters.
The nuisance parameter is θ2, and the shaded region is
the interval defined by this construction. The four
dashed contours are examples of the intervals that define
the contour (from G. Zech).

parameters. In this sense, this analysis is a concrete
example of the profile method.

Although most of these techniques are approximate
in some sense, they have the virtue that they scale in
an intuitively acceptable manner. In the limit where
the statistical uncertainties are far larger than the sys-
tematic uncertainties, the former are the dominant ef-
fect in any inference or hypothesis test. Conversely,
when the systematic uncertainties begin to compete
with or dominate the statistical uncertainties, the re-
sults of any statistical inference reflect the system-
atic uncertainties and these become the limiting fac-
tor in extracting information from the measurement.
I would argue that this should be a minimal require-
ment of any procedure used to take into account sys-
tematic uncertainties.

4.4. Hybrid Techniques

There has been one technique in common use in
high energy physics to incorporate sources of system-
atic uncertainty into an analysis, first described by
R. Cousins and V. Highland [2]. Using the notation
introduced earlier, the authors argue that one should
create a modified probability distribution function

pCH(x|θ) =

∫

p(x|θ, λ)π(λ) dλ, (10)

which could be used to define a likelihood function
and make inferences on θ. They argue that this can
be understood as approximating the effects of having
an ensemble of experiments each of them with various
choices of the parameter λ and with the distribution
π(λ) representing the frequency distribution of λ in
this ensemble.

Although intuitively appealing to a physicist, this
approach does not correspond to either a truly fre-
quentist or Bayesian technique. On the one hand, the
concept of an ensemble is a frequentist construct. On
the other hand, the concept of integrating or “aver-
aging” over the probability distribution function is a
Bayesian approach. Because of this latter step, it is
difficult to define the coverage of this process [5]. I
therefore consider it a Bayesian technique that can be
readily understood in that formulation if one treats
the frequency distribution π(λ) as the prior for λ. I
note that it also has the desired property of scaling
correctly as one varies the relative sizes of the statis-
tical and systematic uncertainties.

5. Summary and Conclusions

The identification and treatment of systematic un-
certainties is becoming increasingly “systematic” in
high energy physics and astrophysics. In both fields,
there is a recognition of the importance of systematic
uncertainties in a given measurement, and techniques
have been adopted that result in systematic uncertain-
ties that can be compared in some physically relevant
sense with the statistical uncertainties.

I have proposed that systematic uncertainties can
be classified into three broad categories, and by do-
ing so creating more clarity and consistency in their
treatment from one measurement to the next. Such
classification, done a priori when the experiment is be-
ing defined, will assist in optimizing the experimental
design and introducing into the data analysis the nec-
essary approaches to control and minimize the effect
of these systematic effects. In particular, one should
not confuse systematic uncertainties with cross-checks
of the results.

Bayesian statistics naturally allow us to incorporate
systematic uncertainties into the statistical analysis
by introducing priors for each of the parameters as-
sociated with the sources of systematic uncertainty.
However, one must be careful regarding the choice of
prior. I recommend that in all cases the sensitivity of
any inference or hypothesis test to the choice of prior
be investigated in order to ensure that the conclusions
are robust.

Frequentist approaches to systematic uncertainties
are less well-understood. The fundamental problem is
how one defines the concept of an ensemble of mea-
surements, when in fact what is varying is not an out-
come of a measurement but ones assumptions concern-
ing the measurement process or the underlying theory.
I am not aware of a robust method of incorporating
systematic uncertainties in a frequentist paradigm ex-
cept in cases where the systematic uncertainty is really
a statistical uncertainty and the additional variable
can be treated as a nuisance parameter. However, the
procedures commonly used to incorporate systematic
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uncertainties into frequentist statistical inference do
have some of the desired “scaling” properties.
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