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1. Chapter 41, Problem 14, Page 1130

(a) The maximum orbital angular momentum quantum number is l = n− 1, so that the in
terms of the principal quantum number,

L = 30
√

11h̄ (1)

=
√

(n− 1)nh̄ (2)

⇒ (n− 1)n = 302 × 11 = 99× 100 (3)
⇒ n = 100. (4)

(b) The energy of this state is

E100 =
−13.6
1002

= −1.36× 10−3 eV. (5)

2. Chapter 41, Problem 22, Page 1130

For a S = 2 particle, the magnitude of its spin is

S =
√

2× 3h̄ (6)
=
√

6h̄ = 2.58× 10−34 Js. (7)

3. Chapter 41, Problem 28, Page 1130

(a) The principal quantum number n = 4. Thus the energy of the state is E4 = −13.6/16 =
0.85 eV.

(b) The orbital quantum number l = 3, so the magnitude of the orbital angular momentum
is

L =
√
l(l + 1)h̄ =

√
12h̄ = 3.65× 10−34 Js. (8)

(c) Since j = 5/2, the magnitude of the total angular momentum is

J =
√
j(j + 1)h̄ =

√
35
2
h̄ = 3.12× 10−34 Js. (9)

(d) The orbital angular momentum is greater. This is because j = l − 1/2, which implies
that the orbital angular momentum and the electron spin vector are anti-parallel.

4. Chapter 41, Problem 48, Page 1131
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(a) The energy levels for an electron in a one-dimensional square well are

En =
h2

8mL2
n2 (10)

=
(6.63× 10−34)2

8(9.11× 10−31)(2.0× 10−10)2
1

1.60× 10−19
n2 = 9.42n2 eV. (11)

The energy level diagram is then a set of levels with spacing given by this formula. The
allowed transitions are shown in Fig. 1.

n=4

n=3

n=2

n=1

Figure 1: The energy level diagram showing all allowed transitions of the electron in a square well
with n = 4 (Problem 4a).

(b) The possible photon energies are given by the difference in the energy levels in part a.

∆E4→3 = 9.42(16− 9) = 66.0 eV (12)
∆E4→1 = 9.42(16− 1) = 141 eV (13)
∆E3→2 = 9.42(9− 4) = 47.1 eV (14)
∆E2→1 = 9.42(4− 1) = 28.3 eV. (15)

5. Chapter 41, Problem 52, Page 1132

The probability for an electron to be found in the radial interval 0 ≤ r ≤ 3a0 is

P =
∫ 3a0

0
4πr2|ψ|2dr (16)

= 4π
(

1
πa3

0

) {
(3a0)2e−6

−2/a0
− 2
−2/a0

[
e−6

(−2/a0)2
(−6− 1)

]
− 2

(−2/a0)3)

}
(17)

= 4
{
−9

2
e−6 − 7

4
e−6 +

1
4

}
(18)

= 1− 25e−6 = 0.938, (19)

where we have performed the integration by parts.

6. Chapter 43, Problem 2, Page 1188
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The distance of closest approach, rmin, is defined by where the Coulomb potential energy
would equal the initial kinetic energy Ki. Since the potential energy of an α particle in the
electric field of the 56Fe nucleus is

U(r) =
k(2)(26)e2

r
, (20)

⇒ Ki =
52ke2

rmin
(21)

⇒ rmin =
52ke2

Ki
(22)

=
52(9× 109)(1.602× 10−19)2

(6× 106)(1.602× 10−19)
= 1.25× 10−14 m = 12.5 fm, (23)

or about 2.7 times the radius of the 56Fe nucleus.

7. Chapter 43, Problem 20, Page 1189

The total binding energy is

Eb = [26mp + 30mn −mFe] (24)
= [26(1.00728) + 30(1.00867)− 55.9206] (931.5) = 493 MeV (25)

⇒ Eb/A =
493
56

= 8.80 MeV/nucleon. (26)

8. Chapter 43, Problem 30, Page 1189

(a) The time to decay a fraction N/N0 of the original nuclei, t, is given by

t

t1/2
=

ln (N0/N)
ln 2

. (27)

Since the lifetime of 90Sr is t1/2 = 29 years and the fraction that remains is 1 minus the
fraction that decays, the time to decay 99% of the 90Sr is

t = t1/2
ln (1/0.01)

ln 2
(28)

= (29)
ln(100)

ln 2
= 193 years. (29)

(b) The same calculation yields a time of

t = t1/2
ln (1/0.001)

ln 2
(30)

= (29)
ln(1000)

ln 2
= 289 years. (31)

9. Chapter 43, Problem 38, Page 1189
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Figure 2: The energy level diagram showing all allowed transitions of the electron in a square well
with n = 4 (Problem 9b).

(a) From counting the change in the number of neutrons and protons after each α and β
decay, we find that the third daughter has four less neutrons but the same number of
protons, so that it is 232

90 Th.

(b) The decay chain is shown in Fig. 2.

10. Chapter 43, Problem 50, Page 1190

(a) We assume that the two radioactive isotopes, a and b, are independent of each other, so
the total activity is given by

(λN)tot = (λN)a + (λN)b (32)

= (λN)a,0 2−t/ta,1/2 + (λN)b,0 2−t/tb,1/2 , (33)

where the initial activities, (λN)a,0 and (λN)b,0, are determined by the initial sample
compositions. One of these two isotopes has a shorter lifetime, and therefore dominates
the total activity at times near 0, whereas the other dominates the activity after the
one with the shorter lifetime has decayed away. By approximating the initial and final
activities with straight lines and solving for the slopes, we get values of

ta,1/2 � 1.0 h (34)
tb,1/2 � 36 h. (35)
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(b) We can solve for the activity of the longer-lived species at t = 0 to get an initial activity
of

(λN)b,0 � 0.3 MBq. (36)

Since the total activity at t = 0 is about 4.3 MBq, the initial activity of the shorter-lived
species is

(λN)a,0 � 4.3− 0.3 = 4.0 MBq. (37)
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