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1. (a) One simply grinds through the calculations of the divergence and curl of the vector field.
For convenience, we use a spherical-polar coordinate system with charge q2 at the origin.
Since the electric field now only has radial dependence, we find
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1
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(
r2Er

)
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. (3)

Similarly,
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= 0 (6)

as only Er is non-zero and only depends on r.

(b) We note that since the two shells are connected with a conducting wire, they must be
at the same potential; otherwise, charge would flow from one shell to the other. The
potential energy of a charge q1 in an electric field generated by charge q2 at the origin
is the negative of the work done to bring that charge from infinity. Hence

Φ(r1) = −
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(
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)
dr (7)

= −
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(
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)
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1
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)(
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1

)
. (9)

We can now calculate the potential of a charge q located a distance r from the centre
of a conducting sphere of radius b and with charge qb centred at the origin. We choose
a polar coordinate system with the z-axis passing through the location of charge q. We
divide the sphere into annuli defined by (θ, θ + dθ), where θ is the polar angle. The
distance of all the charge on this annulus to charge q is√

r2 + b2 − 2rb cos θ, (10)
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by the cosine law. The total charge on this belt is given by the surface charge density

σb =
qb

4πb2
, (11)

multiplied by the area of the annulus, 2π b2 sin θdθ, or

dq =
qb

4πb2
× 2π b2 sin θdθ (12)

=
qb sin θ

2
dθ. (13)

The contribution of this annulus to the potential for the charge is then

dΦ =
(

1
1 + δ

)(
kqb

2 (r2 + b2 − 2rb cos θ)(1+δ)/2

)
sin θdθ. (14)

We now integrate over all θ to obtain

Φb(r) =
π∫

0

(
1

1 + δ

)(
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)
sin θdθ (15)

=
qb
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r2 + b2 + 2rb

)(1−δ)/2
−
(
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)(1−δ)/2
]
. (16)

This form is true both inside and outside the sphere.
We can similarly calculate the potential arising from the charge on the sphere with radius
a and charge qa and it is the same form as Eq. 16 replacing a ↔ b. The potential at
each sphere is the sum of these contributions, and have to be equal. Hence,

Φa(a) + Φb(a) = Φa(b) + Φb(b) (17)

⇒ qa (2a)−δ

a (1− δ2)
+
qb (2ab)−δ

a (1− δ2)

[
(a+ b)1−δ − (a− b)1−δ

]
=

qa (2b)−δ

b (1− δ2)
+

qb (2ab)−δ

b (1− δ2)

[
(a+ b)1−δ − (a− b)1−δ

]
⇒ qb

2

[
(a+ b)1−δ − (a− b)1−δ − 21−δab−δ

]
=

qa
2

[
(a+ b)1−δ − (a− b)1−δ − 21−δba−δ

]
. (18)

To further simplify this, we assume δ << 1 and use the Taylor series expansion for the
exponential function

f(x) ≡ px = ex ln p (19)

⇒ df

dx
= ln p px (20)

⇒ f(x+ ∆x) ' px + px ln p∆x. (21)

Applying that to the first two terms in the square brackets above on the LHS, we find

(a+ b)1−δ − (a− b)1−δ ' 2b− δ
[
a ln

(
a+ b

a− b

)
+ b ln

(
a2 − b2

)]
. (22)
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Similarly, we can expand

b−δ ' 1− δ ln b and a−δ ' 1− δ ln a. (23)

Putting all this together, and defining the constant

c ≡ a ln
(
a+ b

a− b

)
+ b ln

(
a2 − b2

)
, (24)

we obtain the relationship

qb
[
2b− cδ − 21−δa (1− δ ln b)

]
' qa

[
2b− cδ − 21−δb (1− δ ln a)

]
(25)

⇒ qb ' −qaδ
[

2b ln (2a)− c
2 (a− b)

]
(26)

to lowest order in δ.
(c) If δ is zero, we know from Gauss’s Law that qb must be zero, since that would be the

only way to have the two spheres at constant potential. From the above result, we now
have an expression to lowest order in δ of the residual charge on sphere b that must
accumulate if we place a charge on sphere a:

δ ' − qb
qa

[
2 (b− a)

2b ln (2a)− c

]
. (27)

Hence, the experiment to be done is to place the charge on sphere a, then disconnect
the two spheres electrically and measure the charge on sphere b.
This is not the most accurate way of testing Coulomb’s Law at laboratory scales, but it
gives interesting limits. Think of what choice of a and b would increase the sensitivity
to δ.

2. (a) We can assume the two daughter nuclei are point charges, with charges of qKr = 36qe
and qBa = 56qe. The potential energy of the two nuclei a distance r apart is given by

Φ(rsep) = −kqKrqBa
rsep

(28)

⇒ rsep = −kqKrqBa
Φ(rsep)

(29)

= −(8.987× 109 N m2/C2)(36× 1.602× 10−19 C)((36× 1.602× 10−19 C)
(−0.85× 200 MeV × (1.602× 10−13 J/MeV)

= 1.69× 10−14 m, (30)

which is of the same size as the scale of the daughter nuclei.
(b) We can generalize the formula for the potential energy using as the charges for the two

daughter nuclei fqU and (1− f)qU . Then the potential energy becomes

Φ(rsep) =
kf(1− f)q2U

rsep
(31)

=
kq2U
rsep
×
(
f − f2

)
. (32)
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We see that the energy is a quadratic function of f , and has a maximum value. The
fraction that maximizes the energy, fmax, is found by setting the derivative of Φ w.r.t.
f to zero, or

0 = 1− 2fmax (33)
fmax = 1/2. (34)

Its a poorly understand fact that most of the energy generated in a nuclear reaction is
in fact electromagnetic in origin.

3. (a) Suppose we have a test charge q at position ~x′ = (ρ′, z′, φ′) above the plane. We know
that an image charge located at (ρ′,−z′, φ′) and charge −q would result in a potential
field equal to zero everywhere for z = 0. Although this can’t be the full story, we start
with this and see what can then be next done. Explicitly, the Green function is the
potential function Φ1 divided by the test charge:

G1(~x, ~x′) =
1

4πε0

 1∣∣∣~x− ~x′
∣∣∣ − 1∣∣∣~x− ~x′ + 2z′ẑ

∣∣∣
 . (35)

We note that the other boundary condition is independent of the test charge and so
is an additive term to the general solution to Φ using Green’s Theorem. To take into
account this boundary condition, namely that Φ = V in the region z = 0 and ρ < a, we
consider the effects of placing two insulating disks slightly less than radius a, D and D′,
each having total charge Q, and −Q, respectively. The two disks are separated in z by
a small amount, ∆z with disc D located ∆z/2 above the plane z = 0 and disk D′ ∆z/2
below. The potential associated with these two charge distributions at position ~x is

Φ2(~x) =
1

4πε0

2π∫
0

a∫
0

 σ∣∣∣~x− ~x′
∣∣∣ − σ∣∣∣~x− ~x′ + ∆zẑ

∣∣∣
 dφ′ρ′dρ′. (36)

where we have defined the surface charge density σ ≡ Q/(πa2). Since

1∣∣∣~x− ~x′ + ∆zẑ
∣∣∣ =

1√∣∣∣~x− ~x′
∣∣∣2 + (∆z)2 + 2∆z

(
~x− ~x′

)
· ẑ

(37)

=
1∣∣∣~x− ~x′

∣∣∣
1 +

2∆z
(
~x− ~x′

)
· ẑ∣∣∣~x− ~x′

∣∣∣2 +O
[
(∆z)2

]
−1/2

(38)

=
1∣∣∣~x− ~x′

∣∣∣
1−

∆z
(
~x− ~x′

)
· ẑ∣∣∣~x− ~x′

∣∣∣2 +O
[
(∆z)2

] , (39)

we can write

Φ2(~x) =
1

4πε0

2π∫
0

a∫
0

 σ∣∣∣~x− ~x′
∣∣∣
cos θ∆z∣∣∣~x− ~x′

∣∣∣
 dφ′ρ′dρ′, (40)
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where θ is the angle between ~x− ~x′ and ẑ.
We now keep σ∆z ≡ Dp constant while we take the limit ∆z → 0. In that case, the
potential becomes

Φ2(~x) =
1

4πε0

2π∫
0

a∫
0

Dp cos θ∣∣∣~x− ~x′
∣∣∣2
 dφ′ρ′dρ′. (41)

As discussed in Jackson, pp. 33-34, this can be rewritten simply as

Φ2(~x) = − 1
4πε0

2π∫
0

a∫
0

DpdΩ′ (42)

where dΩ′ is the solid angle subtended at ~x− ~x′ by the area element ρ′dρ′dφ′. The key
point here is that on the surface of the disk, the potential associated with this “dipole
layer” is given by

Φ2 =
Dp

ε0
. (43)

So selecting Dp = V ε0 gives us the required boundary condition.
Notice that this term ensures that the solution satisfies the boundary conditions, and is
therefore an additive term to the potential.
The Green function for these boundary conditions is formally then given by

G2(~x, ~x′) =
1

4πε0

 1∣∣∣~x− ~x′
∣∣∣ − 1∣∣∣~x− ~x′ + 2z′ẑ

∣∣∣
+

V

4π

2π∫
0

a∫
0

dΩ′ (44)

where dΩ′ depends on both ~x and ~x′ in the manner described above.

(b) Now that we have the expression for the Green function G2(~x, ~x′) in Eq. 44, for an
arbitrary charge distribution κ(~x′), the potential at any point ~x is simply

Φ(~x) =
∫
z>0

1
4πε0

 1∣∣∣~x− ~x′
∣∣∣ − 1∣∣∣~x− ~x′ + 2z′ẑ

∣∣∣
κ(~x′)ρ′dρ′dz′dφ′ +

V

4π

2π∫
0

a∫
0

dΩ′. (45)

(c) The potential along the ẑ axis is just given by the second term in the Green function:

Φ2(~x) =
V

4π

2π∫
0

a∫
0

 cos θ∣∣∣~x− ~x′
∣∣∣2
 dφ′ρ′dρ′. (46)

The cosine term for a point ~x along ẑ is

cos θ =
z√

(ρ′)2 + z2
(47)
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so the integral becomes

Φ2(~x) =
V z

4π

2π∫
0

a∫
0

 1[
(ρ′)2 + z2

]3/2
 dφ′ρ′dρ′ (48)

=
V z

2

a∫
0

ρ′

z3

[
1 +

(
ρ′

z′

)2
]3/2 dρ′ (49)

= V

[
1− z√

z2 + a2

]
(50)

where we have performed the integration by transforming to the angle θ′ = arctan(ρ′/z).
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