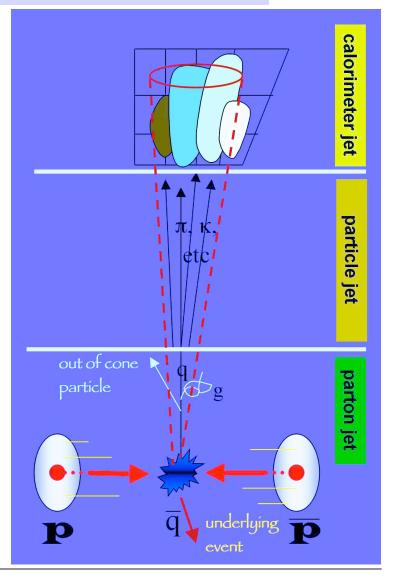
Hard Scattering in Hadron-Hadron Collisions: Physics and Anatomy

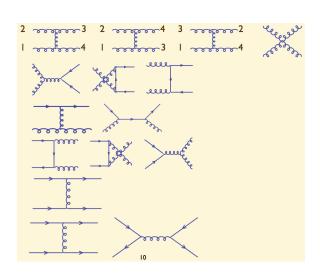

Section 4: Production & Identification of Jets

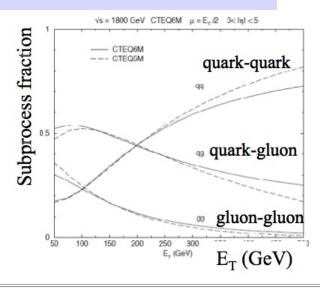
- 1. Definitions of Basic Physics Processes
- 2. Anatomy of a Jet
- 3. Jet-Finding Algorithms
- 4. Resolutions and Efficiencies
- 5. Heavy Quark Tagging
- 6. Example: Quark Substructure

Fall 2009 PHY2407H

Definitional Issues

- Confinement in QCD ensures that high P_T quarks & gluons undergo
 - Fragmentation -- ie, dissociation into a "jet" of coloured partons
 - Hadronization -- ie, the partons form colourless, observable hadrons
- Study of jets motivated by
 - Understanding QCD
 - Studying of heavy quarks
 - > b/c quarks that fragment & hadronize before decay
 - > Top quarks that decay before fragmentation/hadronication
 - Searching for new interactions that couple to quarks/gluons
 - Jets as a background source to e, μ, τ & ν

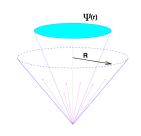


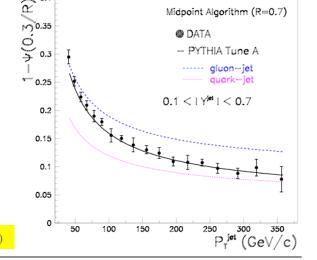

Fundamentals of Jet Physics

Basic production mechanism in pQCD starts with

$$\sigma = \sum_{\substack{\text{partons } i \\ \text{colour } j}} C_{ij} \int_{0}^{1} d\tau \int_{\tau}^{1} \frac{dx_{1}}{\tau} \left[f_{1}(x_{1}) f_{2}(\tau / x_{1}) \right] \hat{\sigma}(\tau s)$$

Leading-order (LO)
 diagrams already complex


Process	$ar{\Sigma} \mathcal{M} ^2/g^4$	Numerical value for 90^o
$qq' \rightarrow qq'$	$\frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$	2.22
$q\bar{q'} \to q\bar{q'}$	$\frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$	2.22
$qq \to qq$	$\tfrac{4}{9}(\tfrac{\hat{s}^2+\hat{u}^2}{\hat{t}^2}+\tfrac{\hat{s}^2+\hat{t}^2}{\hat{u}^2})-\tfrac{8}{27}\tfrac{\hat{s}^2}{\hat{u}\hat{t}}$	3.26
$q\bar{q} \to q'\bar{q'}$	$\tfrac{4}{9} \tfrac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$	2.22
$q\bar{q} \to q\bar{q}$	$\frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} \right) - \frac{8}{27} \frac{\hat{u}^2}{\hat{s}\hat{t}}$	2.59
$q\bar{q} \to gg$	$\tfrac{32}{27} \tfrac{\hat{t}^2 + \hat{u}^2}{\hat{t}\hat{u}} - \tfrac{8}{3} \tfrac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$	1.04
$gg \to q\bar{q}$	$\tfrac{1}{6} \tfrac{\hat{t}^2 + \hat{u}^2}{\hat{t}\hat{u}} - \tfrac{3}{8} \tfrac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$	0.15
$gq \to gq$	$\frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{s}\hat{u}} + \frac{\hat{u}^2 + \hat{s}^2}{\hat{t}^2}$	6.11
$gg \rightarrow gg$	$\frac{9}{2}(3 - \frac{\hat{t}\hat{u}}{\hat{s}^2} - \frac{\hat{s}\hat{u}}{\hat{t}^2} - \frac{\hat{s}\hat{t}}{\hat{u}^2})$	30.4


What Have We Learned?

- Definition of jets critical
 - Much evolution in algorithms
 - Driven in large measure by theoretical considerations
- Calibration of jets requires datadriven techniques
 - Developed several techniques to calibrate in situ
 - Still "work in progress"
- Approach to jet-finding and calibration driven by physics
 - Best example is comparison between
 - > QCD tests
 - Reconstruction of heavy objects (top and Higgs)

- Need data to understand jets as backgrounds
 - Examples include
 - > Lepton ID
 - > MET measurement
 - > Heavy quark tagging
 - Use to "calibrate" MC/simulation
- Bottom line: SM Picture of QCD works well

$$\Psi(r) = \frac{1}{N_{jet}} \sum_{jets} \frac{P_T(0,r)}{P_T(0,R)}$$

CDF II Preliminary

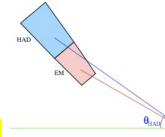
D. Acosta et al. (CDF), Phys. Rev. D 71, 112002 (2005)

Jet Anatomy

- A jet arises from 2 different physical phenomena
 - Happen at different energy scales
 - > Fragmentation of initial parton
 - QCD radiation of a coloured object
 - Creates a "cluster" of coloured partons
 - In principle, not independent of rest of event
 - Energy scale >> 1 GeV
 - > Hadronization of "cluster"
 - Formation of colourless objectsmesons & baryons
 - Responsible for the real observables
 - Energy scale ~1 GeV
- Have to worry about
 - What defines a jet (algorithm)?
 - What its properties are (recombination scheme)?

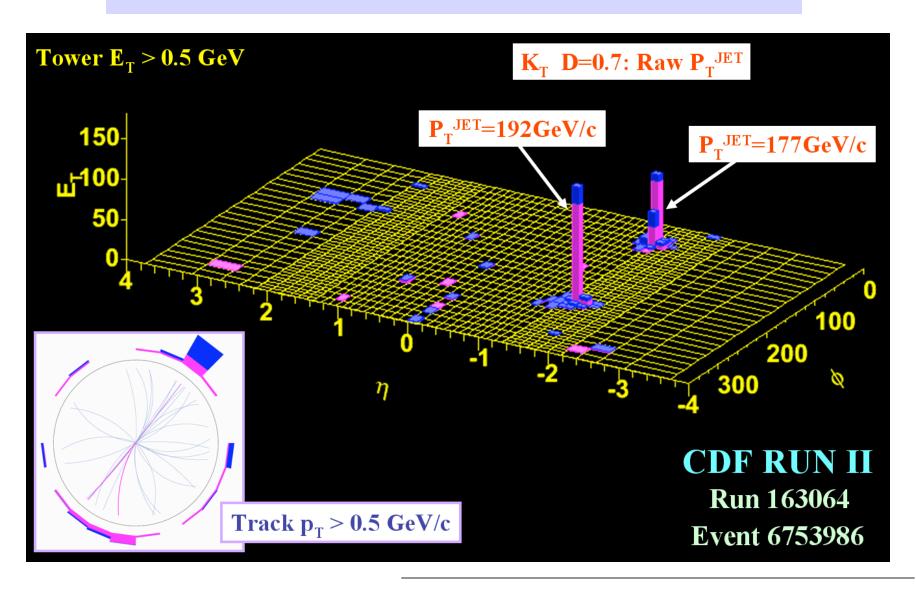
- First, tackle easiest part: What is a jet's observable properties?
 - Assume you have a collection of final state mass-less "particles" detected in calorimeter towers i

$$\vec{p}_J = \left(E^J, p_x^J, p_y^J, p_z^J\right) = \sum_i \left(E^i, p_x^i, p_y^i, p_z^i\right)$$


$$p_T^J = \sqrt{(p_x^J)^2 + (p_y^J)^2}$$

$$M^J = \sqrt{(E^J)^2 - (p^J)^2}$$

$$y^{J} = \frac{1}{2} \ln \frac{E^{J} + p_{z}^{J}}{E^{J} - p_{z}^{J}}$$


$$\varphi^{J} = \tan^{-1} \frac{p_{y}^{J}}{p_{x}^{J}}$$

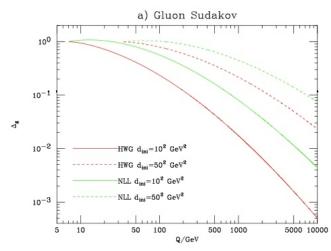
- Advantages:
 - > Clear Lorentz behaviour
 - Avoids use of E_T which has ill-defined definition
 - Can generalize to "cells", towers, charged particles, etc.

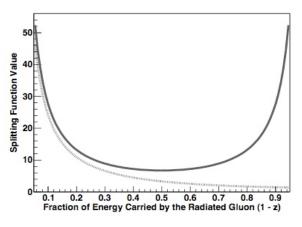
G. Blazey et al., FERMILAB-CONF-00-092-E and hep-ex/0005012, May 2000

A Real Jet Event

Parton Shower Evolution

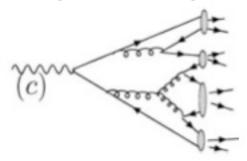
- **Start with a parton (q/g) with virtuality \mu^2**
 - Probability of emission with daughter carrying z fraction of parent momentum


$$d^{2}P_{a}(z,\mu^{2}) = \frac{d\mu^{2}}{\mu^{2}} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) dz$$

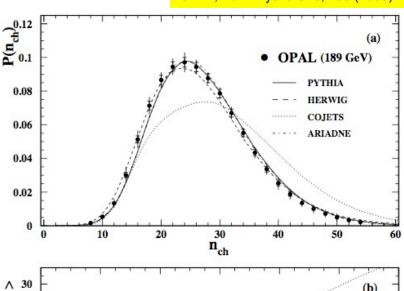

- Order these using Sudakov factor, relating $\mu^2 \sim Q^2$

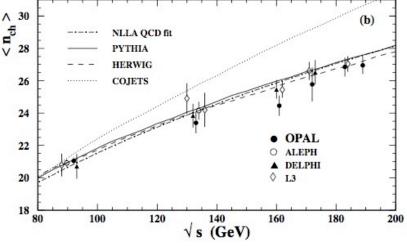
$$P_a^{no}(Q_{\text{max}}^2, Q^2) = \exp\left(-\int_{Q^2}^{Q_{\text{max}}^2} dQ' \int_{z_{\text{min}}}^{z_{\text{max}}} dz' P_a(z', Q'^2)\right)$$

- Deal with infrared & collinear divergences
 - > Define minimum $\mu \mu_0$
- Ensure colour coherence of multiple emissions
 - > Typically do this by angular ordering, selective vetoing, etc.
 - Must be respected when hadronization is performed



Hadronization of Showers


Hadronization is then performed


- Invoke "parton-hadron duality"
- Several models
 - > String fragmentation (eg., PYTHIA)
 - > Cluster fragmentation (eg. HERWIG)

- Have various parameters that need to be tuned to data
 - > Best constraints from LEP
 - Tevatron results confirm these, but don't really add much power
 - Challenging to measure without significant systematics
 - > Remains a source of systematic uncertainty

OPAL, Eur. Phys. J C16, 185 (2000)

Jet Algorithms

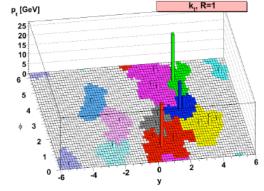
- Jet clustering algorithms have been focus of much effort
 - Goals of any algorithm can be divided into
 - > Theoretically motivated:
 - Fully specified
 - Detector independent
 - Theoretically well-behaved
 - Order independent
 - > Experimentally motivated:
 - Fully specified
 - Detector independent
 - Optimal resolution and efficiency
 - Ease of calibration
 - Computationally efficient
- Various efforts to develop consistent frameworks
 - Snowmass Accord (1990)
 - Les Houches Accord (1999)

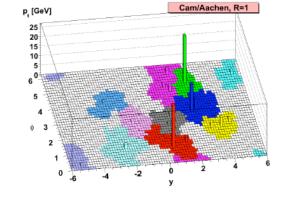
- Raz Alon (see talk below) has done a nice job of summarizing current Jet Algorithm codes
 - Key observations:
 - > In principle, prefer some algorithms over others
 - Seedless cone-based algorithms
 - K_T algorithms
 - Computational efficiency is a concern in some cases
 - But largely an issue of optimization
 - Selection of "best" algorithm requires evaluation of ultimate systematic uncertainties
 - Need data, as certain choices will depend on performance of calorimeter
 - Example is noise and pileup
 - Good news is that we are not limited by lack of ideas

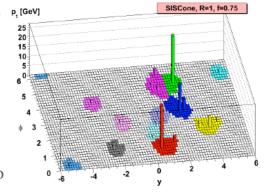
R. Alon, http://indico.cern.ch/conferenceDisplay.py?confld=52628

Clustering Effects

Illustrate by one example (from ATLAS studies)

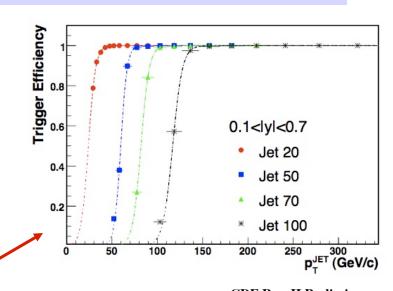

- Compare results of several different algorithms
 - > K_T with R=1
 - > Angular-ordering (Cam/Aachen)
 - > SISCone
 - > Anti-K_T

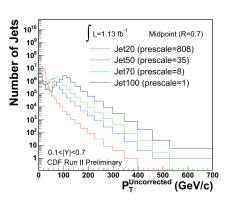

Things to be concerned about

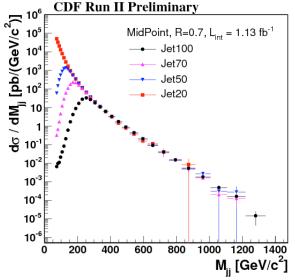

- > Cluster sizes determined by data will present challenges to calibrate P. 100-VI
- > Cluster merging/splitting will continue to be a challenge
- Optimization of resolution/ systematic uncertainties will require effort


Things not to worry about

> Angular resolution (though need to check for any biases)!



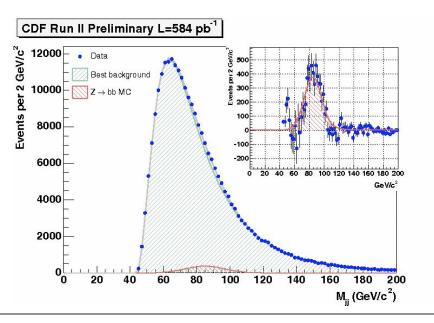




Jet Finding Efficiencies

- Efficiency of finding jets limited primarily by two effects:
 - Detector energy response & resolution
 - Physical size of jets
 - > For cone algorithms, these two compete with each other
- Further complicated by the fact that jets are produced with sharply falling spectrum
 - Means that efficiencies become an issue already at the trigger level
 - Manage these at Tevatron with variety of triggers
 - > Prescale lower-energy jet triggers
 - > Lower energy jets used primarily for
 - Background studies
 - Calibration

Jet Energy Resolutions


- MC + simulation give estimates of energy resolution
 - Resolution is determined primarily by convolution of
 - > Intrinsic calorimeter response
 - > Jet fragmentation & hadronization effects
 - > Jet algorithm + pileup +
 - In reality, need to measure the resolution in data
- Four *in situ* measurements of resolution developed at Tevatron
 - γ+jet balancing
 - W to qq in top quark decays
 - Dijet balancing (more of a constraint than anything else)
 - Z to bb decays
 - > Require two jets, each with secondary vertex b-tag
 - Possible due to L2 vertex trigger

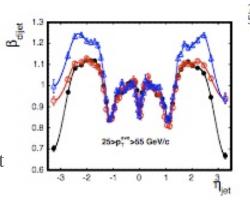
■ Taking the FWHM ~ 25 GeV/c², obtain

$$\sigma_Z \sim 12\% \ M_Z$$

$$\Rightarrow \frac{\sigma}{P_T^J} \sim 17\%$$

Or about 50% more than intrinsic energy resolution of calorimeter

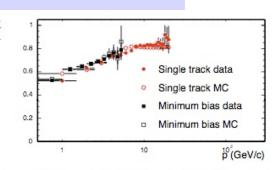
Jet Energy Calibration

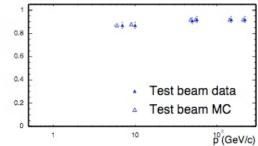

■ To calibrate jet energy scale:

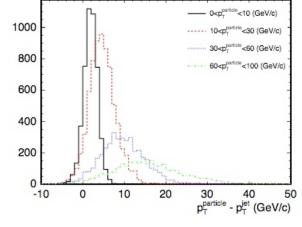
- 1. Determine intrinsic response to particles
 - Combination of in situ measurements & test beam data
- 2. Dijet balancing to get uniform η response
 - > Primarily dijet data
 - > "Tune" MC and simulation
- 3. Determine absolute response to "particle jet"
 - > Define particle jet as all real particles in cone of jet
 - > Account for calorimeter nonlinearity, cracks, etc.
- 4. Take into account "out-of-cone" effects, multiple interactions

parton

underlying

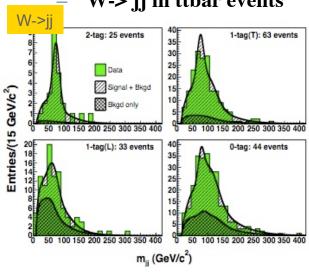

> Use combination of MC and data

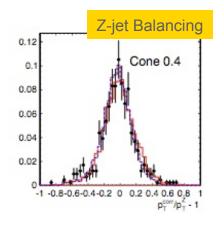


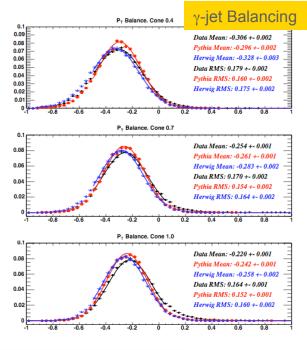

out-of-cone

inside cone

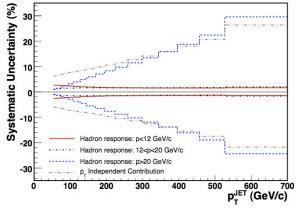
response

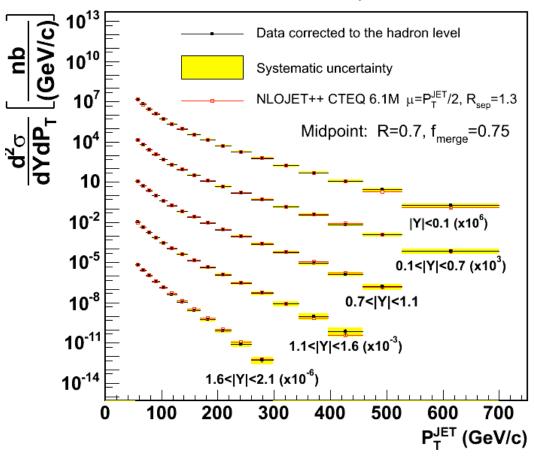




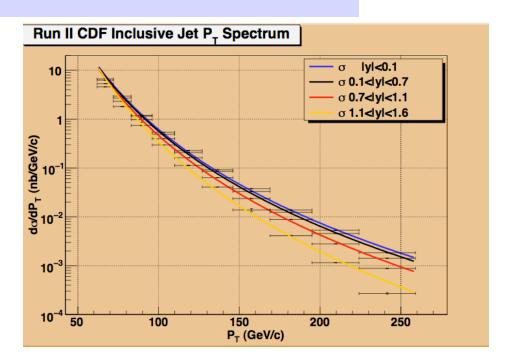

A. Bhatti et al., Nucl. Instrum. Meth. A566, 375 (2006)

Final Steps in Energy Calibration


- Cross check using, for example,
 - Z+jet & γ+jet balancing
 - Dijet balancing
 - W-> jj in ttbar events


- Estimate systematic uncertainties
 - Estimate each source independently
 - Struggle with the fact that we cannot measure high P_T jet response

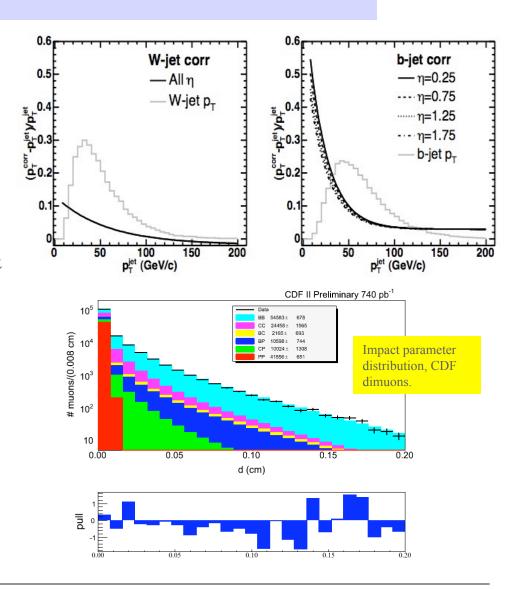
Production Cross Sections


- Recent CDF analysis of ~1.13 fb⁻¹ of jet data
 - Used mid-point algorithm with R=0.7, f_{merge}=0.75
 - Data is scaled in plot to avoid overlapping
- Provide a strong test of QCD
 - Theoretically "clean" to model
 - Compare with NLO calculations
 - > Fill in details!
 - Generally a trend of small excess of events at higher P_T
 - Not statistically significant given systematic uncertainties

CDF Run II Preliminary (L=1.13 fb⁻¹)

Total Jet Production Rates

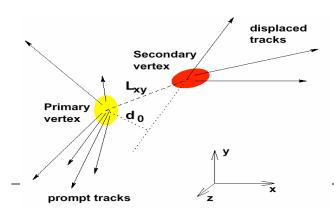
- An "Exercise to Reader" what is total cross section?
 - To answer this question
 - > Fit the spectrum in each y bin to power law using ROOT
 - > Use fit to extrapolate over various P_T ranges
 - Was lazy, only did the first four bins
 - > Generally, differential cross section falls with (P_T)⁻⁶
 - And gets a little steeper as P_T increases
 - Means that higher P_T jets tend to be more central
- Note large cross section at low P_T
 - This is the source of backgrounds to other objects
 - Also note that these are quite uncertain given the extrapolation!
 - > Eg., just changing range of fit
 - $-\Delta\sigma(P_T>10)\sim30\%$


Cross Section (in nb)

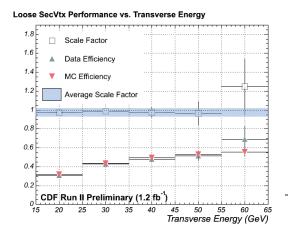
	PT > 62 GeV	PT > 30 GeV	PT > 10 GeV
y < 0.1	122	5,600	1,800,000
0.1 < y < 0.7	111	5,600	2,000,000
0.7 < y < 1.1	96	6,100	3,000,000
1.1 < y < 1.6	93	8,900	8,900,000
	422	26,200	15,700,000

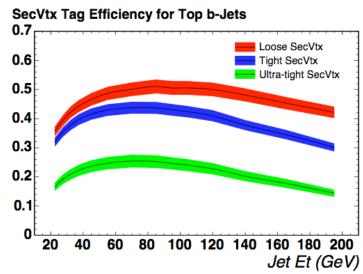
Note: Another \sim 5-10% in rapidity interval 1.6 < |y| < 2.1

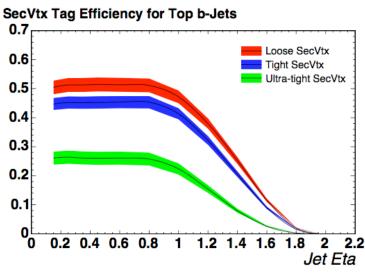
Heavy Quark Jets


- Heavy quarks (b/c) also manifest themselves as jets
 - Different fragmentation process
 - Different hadronization
 - > Result in kinematics that differ from light quark & gluon jets
 - "rich" in v's and charged leptons
 - > Used for identification
 - > But also affect efficiency and & energy resolution
 - Relatively long lifetimes allow for tagging using secondary vertices
 - > Become "standard" technique
- Bottom quarks have been particularly important
 - Essential for top quark studies
 - Result in unique capabilities at hadron colliders
 - > Good example is B_s studies

Heavy Flavour Tagging

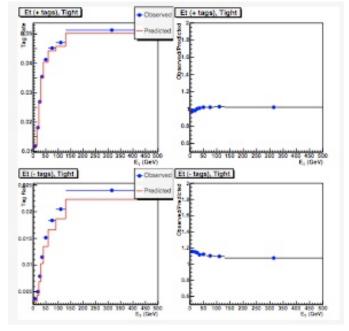

- Heavy flavour tagging has been essential tool at Tevatron
 - Top quark search
 - Search for Higgs
 - Studies of bottom/charm production
- Two methods developed
 - Semileptonic tagging
 - > 20% of b's decay inclusively to µ or e
 - Another 20% have leptons from charm decay
 - Challenge is purity of tagging scheme
 - CDF couldn't get fake rates below about 3-4%
 - Secondary vertex tagging most powerful

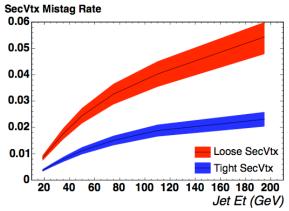

- Basic strategy is to use wellmeasured tracks
 - Select those with large impact parameter
 - > Typically reconstruct average primary beam position in (x,y)
 - Require 2+ tracks with impact
 parameter > 2s and high quality
 - > Attempt to create a secondary vertex
 - > If successful, see if secondary vertex is sufficiently far from primary
 - Tag when secondary vtx found
 - Also "fake tag" when tag found, but in wrong direction



Tagging Efficiencies

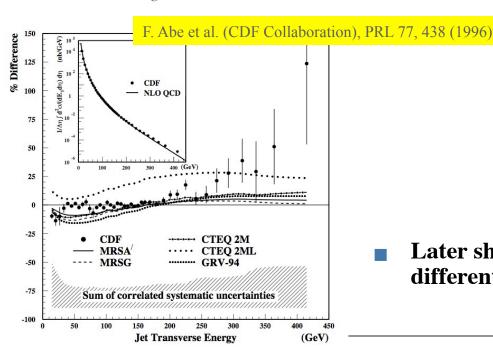
- Tagging efficiency difficult to model via simulation
 - Requires excellent knowledge of tracking resolution & efficiency
 - Strategy:
 - > Measure efficiency and "mistag" rates in data
 - Inclusive electrons and muons
 - Estimate b quark fraction
 - Tag fully reconstructed Bs
 - > Compare with simulation & compute a scale factor
 - SF = $\varepsilon_{\rm Data}/\varepsilon_{\rm MC} \sim 0.95 \pm 0.05$ for "tight" SECVTX


Tagging Fake Rates


B tagging fake rates measured from data

- Take samples of dijet data, and then create a "fake matrix"
 - > Function of 6 variables
 - > Measure both +ve and -ve tag rates for "taggable jets"
 - Use -ve tag rates as mistag rate
 - Apply mistag rate to the jets in data sample before tagging

Variable	Bin Edges
Jet E_T (GeV)	0, 15, 22, 30, 40, 60, 90, 130, 1000
Num Tracks/jet	0, 1, 2, 3, 4, 5, 6, 7, 8 10, 13, 100
$ \eta_{ m jet} $	0.0, 0.4, 0.8, 1.1, 2.4
$n_{ m Primary Vertex}$	1 - 6
$\sum E_t \; (\text{GeV})$	0, 80, 140, 220, 1000
$z_{ m prim}~({ m cm})$	-25, -10, 10, 25


Table 1: Variables and binning used in the mistag matrices.

Example: Quark Substructure

- Search for quark substructure a long-standing tradition at high energies
 - Eichten, Lane & Peskin
 - > PRL 50, 811 (1983)
 - Introduced "contact term" $\Lambda_{\rm C}$
 - CDF obliged in 1996
 - > $\Lambda_{\rm C} \sim 1.6 \ TeV$

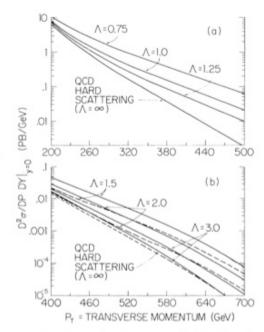
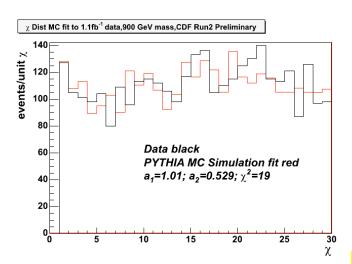
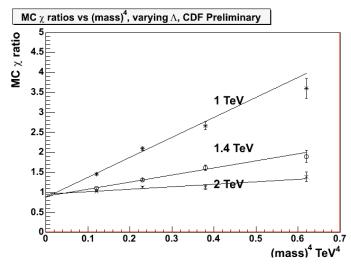
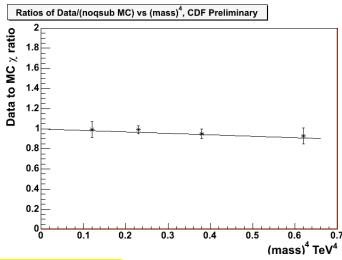


FIG. 3. The jet production cross section (in picobarns/gigaelectronvolt) at rapidity y=0 vs transverse momentum at $\sqrt{s}=2$ TeV in (a) $\bar{p}p$ collisions and (b) pp collisions for various Λ (in teraelectronvolts). The solid and dashed lines in (b) refer, respectively, to the plus and minus signs in Eq. (5). As a result of a cancellation near y=0, the interference is negligible in (a).


Later shown to be described by different PDF behaviour at large x


More Sensitive Study


Employ angular distribution in dijet scattering

$$\chi = \exp[\eta_1 - \eta_2]$$

- Look at this as a function of dijet invariant mass
 - > 100 GeV mass bins
- More sensitive to $\Lambda_{\rm C}$
 - Less sensitive to PDFs
 - > $\Lambda_C > 2.4 \text{ TeV}$ at 95% CL

