Hard Scattering in Hadron-Hadron Collisions: Physics and Anatomy

Section 8: Data Analysis Challenges

- 1. Some Tools to Extract Knowledge
- 2. Incorporation of Systematic Uncertainties
- 3. Significance (or not)
- 4. Perils of Running Blind
- 5. Resources

Introduction: Some Tools

- Our understanding of high energy hadron collisions has limits
 - It's why we are studying them in the first place
 - But some of the limitations in knowledge "get in the way"
 - Progress is made by being able to control or minimize the uncertainties that issues not relevant to your analysis
- Generally, particle physicists have become pretty good at doing basic statistics
 - But we do get into trouble
 - Discuss a number of tools (and pitfalls) in common use

- Treatment of systematic uncertainties
 - Essential, but often riddled with assumptions and approximations
- Significance how do we make statements about belief from data?
 - But we do get into trouble
- Blind Analyses
 - All about avoiding unconscious or conscious bias
 - But there are challenges
- Resources Available
 - No re-invention of wheels please

Literature Summary

Some classic statistics resources

- F. Solmitz, "Analysis of Experiments in Particle Physics", Annu. Rev. Nucl. Sci. 1964:14, 375-402.
- J. Orear, "Notes on Statistics for Physicists", CLNS 82/511 (1982),
 http://pages.physics.cornell.edu/p510/w/images/p510b/6/62/
 Notes.on.org/Statistics.for. Physicists.pdf

Systematic Uncertainty References

 P. Sinervo, "Definition and Treatment of Systematic Uncertainties", http://www.slac.stanford.edu/econf/C030908/papers/TUAT004.pdf

1. Systematic Uncertainties

- Systematic uncertainties play key role in physics measurements
 - Few formal definitions exist, much "oral tradition"
 - "Know" they are different from statistical uncertainties

Random Uncertainties

- ☐ Arise from stochastic fluctuations
- ☐ Uncorrelated with previous measurements
- Well-developed theory
- Examples
 - measurement resolution
 - finite statistics
 - random variations in system

Systematic Uncertainties

- ☐ Due to uncertainties in the apparatus or model
- □ Usually correlated with previous measurements
- □ Limited theoretical framework
- Examples
 - calibrations uncertainties
 - detector acceptance
 - poorly-known theoretical parameters

Literature Summary

Increasing literature on the topic of "systematics" A representative list:

- R.D.Cousins & V.L. Highland, NIM **A320**, 331 (1992).
- C. Guinti, Phys. Rev. D **59** (1999), 113009.
- G. Feldman, "Multiple measurements and parameters in the unified approach,"
 presented at the FNAL workshop on Confidence Limits (Mar 2000).
- R. J. Barlow, "Systematic Errors, Fact and Fiction," hep-ex/0207026 (Jun 2002), and several other presentations in the Durham conference.
- G. Zech, "Frequentist and Bayesian Confidence Limits," Eur. Phys. J, C4:12 (2002).
- R. J. Barlow, "Asymmetric Systematic Errors," hep-ph/0306138 (June 2003).
- A. G. Kim et al., "Effects of Systematic Uncertainties on the Determination of Cosmological Parameters," astro-ph/0304509 (April 2003).
- J. Conrad et al., "Including Systematic Uncertainties in Confidence Interval Construction for Poisson Statistics," Phys. Rev. D 67 (2003), 012002
- G.C.Hill, "Comment on "Including Systematic Uncertainties in Confidence Interval Construction for Poisson Statistics"," Phys. Rev. D 67 (2003), 118101.
- G. Punzi, "Including Systematic Uncertainties in Confidence Limits", CDF Note in preparation.

I. Case Study #1: W Boson Cross Section

Rate of W boson production

- Count candidates $N_s + N_b$
- Estimate background
 N_b & signal efficiency e

$$\sigma = (N_c - N_b) / (\varepsilon L)$$

Measurement reported as

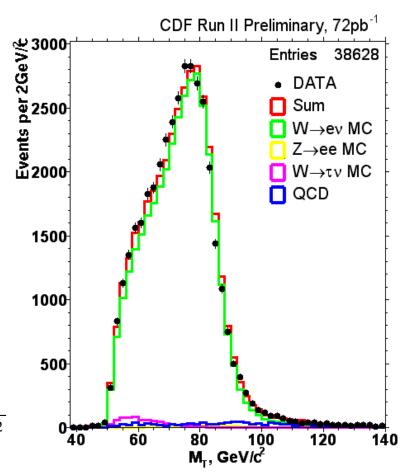
$$\sigma = 2.64 \pm 0.01 \text{ (stat)}$$

 $\pm 0.18 \text{ (syst) nb}$

Uncertainties are

$$\sigma_{stat} \cong \sigma_0^{stat} \sqrt{1/N_c}$$

$$\sigma_{syst} \cong \sigma_0^{syst} \sqrt{(\delta N_b/N_b)^2 + (\delta \varepsilon/\varepsilon)^2 + (\delta L/L)^2}$$



Definitions are Relative

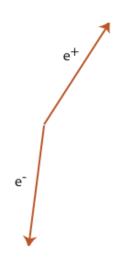
- Efficiency uncertainty estimated using Z boson decays
 - Count up number of Z candidates N_Z^{cand}
 - > Can identify using charged tracks
 - > Count up number reconstructed N_Z^{recon}

$$\varepsilon = \frac{N_Z^{recon}}{N_Z^{cand}} \Longrightarrow \delta \varepsilon \cong \sqrt{\frac{N_Z^{recon} \left(N_Z^{cand} - N_Z^{recon}\right)}{N_Z^{cand}}}$$

Redefine uncertainties

$$\sigma_{stat} \cong \sigma_0 \sqrt{1/N_c + (\delta \varepsilon/\varepsilon)^2}$$

$$\sigma_{syst} \cong \sigma_0 \sqrt{(\delta N_b/N_b)^2 + (\delta L/L)^2}$$



Lessons:

- Some systematic uncertainties are really "random"
- · Good to know this
 - Uncorrelated
 - Know how they scale
- May wish to redefine
- Call these

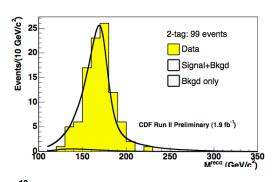
"CLASS 1" Systematics

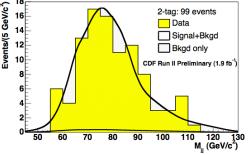
Top Mass Good Example

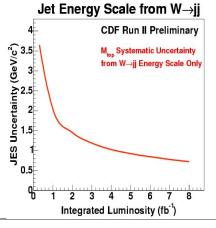
- **Top mass uncertainty in template analysis**
 - Statistical uncertainty from shape of reconstructed mass distribution and statistics of sample
 - Systematic uncertainty coming from jet energy scale (JES)
 - Determined by calibration studies, dominated by modelling uncertainties
 - > 5% systematic uncertainty
- Latest techniques determine JES uncertainty from dijet mass peak (W->jj)
 - Turn JES uncertainty into a largely statistical one
 - Introduce other smaller systematics

$$M_{top} = 171.8 \pm 1.9 \text{ (stat + JES)} \pm 1.0 \text{ (syst)} \text{ GeV/c}^2$$

= 171.9 \pm 2.1 \text{ GeV/c}^2

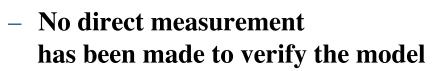


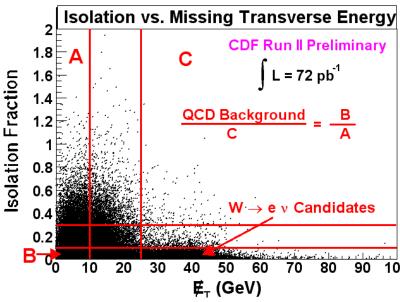




Case Study #2: Background Uncertainty

- Look at same W cross section analysis
 - Estimate of N_b dominated by QCD backgrounds
 - > Candidate event
 - Have non-isolated leptons
 - Less missing energy
 - Assume that isolation and MET uncorrelated
 - > Have to estimate the uncertainty on N_b^{QCD}





Estimation of Uncertainty

- **■** Fundamentally different class of uncertainty
 - Assumed a model for data interpretation
 - Uncertainty in N_b^{QCD} depends on accuracy of model
 - Use "informed judgment" to place bounds on one's ignorance
 - > Vary the model assumption to estimate robustness
 - > Compare with other methods of estimation
- Difficult to quantify in consistent manner
 - Largest possible variation?
 - > Asymmetric?
 - Estimate a "1 s" interval?

- Take
$$\sigma \approx \frac{\Delta}{\sqrt{12}}$$
?

Lessons:

- Some systematic uncertainties reflect ignorance of one's data
- Cannot be constrained by observations
- Call these
 "CLASS 2" Systematics

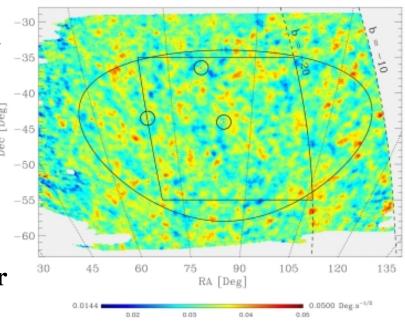
Case Study #3: Boomerang CMB Analysis

Boomerang is one of several CMB probes

Mapped CMB anisoptropy

Data constrain models of the early universe

- Produce a power spectrum for the CMB spatial anisotropy
 - > Remove instrumental effects through a complex signal processing algorithm
- Interpret data in context of many models with unknown parameters



Incorporation of Model Uncertainties

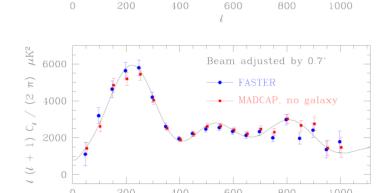
0000 Kg

№ 4000

E

õ

- Power spectrum extraction includes all instrumental effects
 - Effective size of beam
 - Variations in data-taking procedures
- Use these data to extract7 cosmological parameters
 - Take Bayesian approach



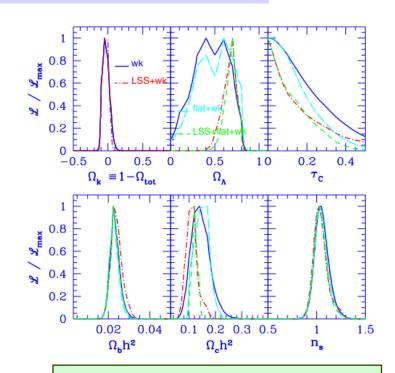
- > Family of theoretical models defined by 7 parameters
- > Define a 6-D grid (6.4M points), and calculate likelihood function for each

Marginalize Posterior Probabilities

- Perform a Bayesian "averaging" over a grid of parameter values
 - Marginalize w.r.t. the other parameters
 - > NB: instrumental uncertainies included in approximate manner
 - Chose various priors in the parameters

Comments:

- Purely Bayesian analysis with no frequentist analogue
- Provides path for inclusion of additional data (eg. WMAP)



Lessons:

- Some systematic uncertainties reflect paradigm uncertainties
- No relevant concept of a frequentist ensemble
- Call these "CLASS 3" Systematics

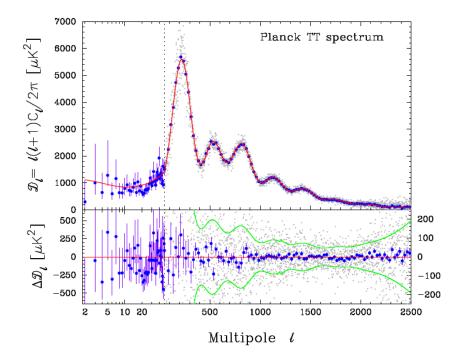
Latest Planck Results

The prior uncertainties

Planck

The prior	i uncertament
dominat	e

	Flanck	
Parameter	Best fit	68% limits
$\Omega_{ m b} h^2 \ldots \ldots$	0.022068	0.02207 ± 0.00033
$\Omega_{\rm c}h^2$	0.12029	0.1196 ± 0.0031
$100\theta_{MC}$	1.04122	1.04132 ± 0.00068
τ	0.0925	0.097 ± 0.038
<i>n</i> _s	0.9624	0.9616 ± 0.0094
$ln(10^{10}A_s)$	3.098	3.103 ± 0.072
Ω_{Λ}	0.6825	0.686 ± 0.020
$\Omega_m \ \dots \dots \dots$	0.3175	0.314 ± 0.020
$\sigma_8 \dots \dots$	0.8344	0.834 ± 0.027
$z_{\rm re}$	11.35	$11.4^{+4.0}_{-2.8}$
H_0	67.11	67.4 ± 1.4
$10^9 A_{\rm s}$	2.215	2.23 ± 0.16
$\Omega_{\mathrm{m}}h^{2}\dots\dots$	0.14300	0.1423 ± 0.0029
$\Omega_{\mathrm{m}}h^{3}\dots\dots\dots$	0.09597	0.09590 ± 0.00059
$Y_{\rm P}$	0.247710	0.24771 ± 0.00014
Age/Gyr	13.819	13.813 ± 0.058



Planck Collaboration, 1303.5076v3 (2014)

Proposed Taxonomy for Systematic Uncertainties

- **■** Three "classes" of systematic uncertainties
 - Uncertainties that can be constrained by ancillary measurements
 - Uncertainties arising from model assumptions or problems with the data that are poorly understood
 - Uncertainties in the underlying models
- Estimation of Class 1 uncertainties straightforward
 - Class 2 and 3 uncertainties present unique challenges
 - In many cases, have nothing to do with statistical uncertainties
 - > Driven by our desire to make inferences from the data using specific models

II. Estimation Techniques

- No formal guidance on how to define a systematic uncertainty
 - Can identify a possible source of uncertainty
 - Many different approaches to estimate their magnitude
 - > Determine maximum effect D

$$\sigma = \frac{\Delta}{2}$$
?

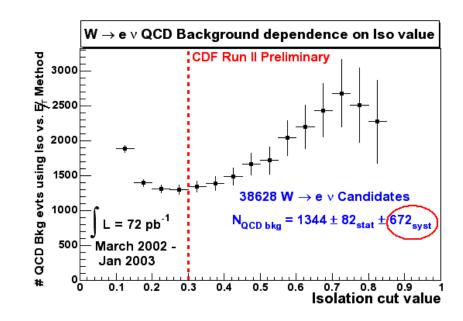
General rule:

$$\sigma = \frac{\Delta}{\sqrt{12}}$$
?

- Maintain consistency with definition of statistical intervals
- Field is pretty glued to 68% confidence intervals
- Recommend attempting to reflect that in magnitudes of systematic uncertainties
- Avoid tendency to be "conservative"

Estimate of Background Uncertainty in Case Study #2

- Look at correlation of Isolation and MET
 - Background estimate increases as isolation "cut" is raised
 - Difficult to measure or accurately model
 - Background comes primarily from very rare jet events with unusual properties
 - > Very model-dependent



- Assume a systematic uncertainty representing the observed variation
 - Authors argue this is a "conservative" choice

Cross-Checks Vs Systematics

- R. Barlow makes the point in Durham(PhysStat02)
 - A cross-check for robustness is not an invitation to introduce a systematic uncertainty
 - > Most cross-checks confirm that interval or limit is robust,
 - They are usually not designed to measure a systematic uncertainty
- More generally, a systematic uncertainty should
 - Be based on a hypothesis or model with clearly stated assumptions
 - Be estimated using a well-defined methodology
 - Be introduced *a posteriori* only when all else has failed

III. Statistics of Systematic Uncertainties

- Goal has been to incorporate systematic uncertainties into measurements in coherent manner
 - Increasing awareness of need for consistent practice
 - > Frequentists: interval estimation increasingly sophisticated
 - Neyman construction, ordering strategies, coverage properties
 - > Bayesians: understanding of priors and use of posteriors
 - Objective vs subjective approaches, marginalization/conditioning
 - Systematic uncertainties threaten to dominate as precision and sensitivity of experiments increase
- There are a number of approaches widely used
 - Summarize and give a few examples
 - Place it in context of traditional statistical concepts

Formal Statement of the Problem

- Have a set of observations x_i , i=1,n
 - Associated probability distribution function (pdf) and likelihood function $p(x_i | \theta) \Rightarrow \mathcal{L}(\theta) = \prod_i p(x_i | \theta)$
 - > Depends on unknown random parameter q
 - > Have some additional uncertainty in pdf
 - Introduce a second unknown parameter /

$$\mathcal{L}(\theta,\lambda) = \prod_{i} p(x_i \mid \theta,\lambda)$$

■ In some cases, one can identify statistic y_j that provides information about l

$$\mathcal{L}(\theta, \lambda) = \prod_{i,j} p(x_i, y_j \mid \theta, \lambda)$$

Can treat / as a "nuisance parameter"

Bayesian Approach

- Identify a prior p(l) for the "nuisance parameter" l
 - Typically, parametrize as either a Gaussian pdf or a flat distribution within a range ("tophat")
 - Can then define Bayesian posterior

$$\mathcal{L}(\theta,\lambda) \, \pi(\lambda) \, d\theta \, d\lambda$$

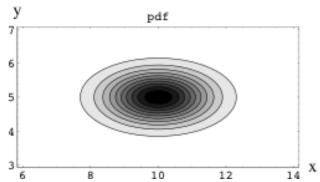
- Can marginalize over possible values of /
 - > Use marginalized posterior to set Bayesian credibility intervals, estimate parameters, etc.
- Theoretically straightforward
 - Issues come down to choice of priors for both q,/
 - > No widely-adopted single choice
 - > Results have to be reported and compared carefully to ensure consistent treatment

Frequentist Approach

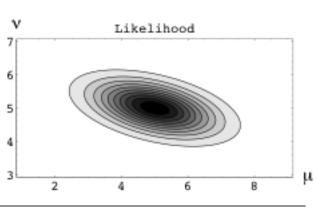
- **Start with a pdf for data** $p(x_i, y_j | \theta, \lambda)$
 - In principle, this would describe frequency distributions of data in multi-dimensional space
 - Challenge is take account of nuisance parameter
 - Consider a toy model

$$p(x,y | \mu,v) = G(x - (\mu+v),1)G(y-v,s)$$

> Parameter s is Gaussian width for *n*



- Likelihood function (x=10, y=5)
 - Shows the correlation
 - Effect of unknown n



Formal Methods to Eliminate Nuisance Parameters

- Number of formal methods exist to eliminate nuisance parameters
 - Of limited applicability given the restrictions
 - Our "toy example" is one such case
 - > Replace x with t=x-y and parameter n with

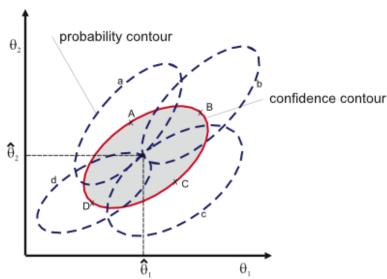
$$v' \equiv v + \frac{\mu s^2}{1 + s^2}$$

$$\Rightarrow p(t, y \mid \mu, v') = G\left(t - \mu, \sqrt{1 + s^2}\right) G\left(y - v' + \frac{ts^2}{1 + s^2}, \frac{s}{\sqrt{1 + s^2}}\right)$$

- > Factorized pdf and can now integrate over n'
- > Note that pdf for m has larger width, as expected
- In practice, one often loses information using this technique

Alternative Techniques for Treating Nuisance Parameters

- Project Neyman volumes onto parameter of interest
 - "Conservative interval"
 - Typically over-covers, possibly badly
- Choose best estimate of nuisance parameter
 - Known as "profile method"
 - Coverage properties require definition of ensemble



From G. Zech

- Can possible under-cover when parameters strongly correlated
 - > Feldman-Cousins intervals tend to over-cover slightly (private communication)

Example: Solar Neutrino Global Analysis

- Many experiments have measured solar neutrino flux
 - Gallex, SuperKamiokande, SNO, Homestake, SAGE, etc.
 - Standard Solar Model (SSM) describes n spectrum
 - Numerous "global analyses" that synthesize these
- **■** Fogli et al. have detailed one such analysis
 - 81 observables from these experiments
 - Characterize systematic uncertainties through 31 parameters
 - > 12 describing SSM spectrum
 - > 11 (SK) and 7 (SNO) systematic uncertainties
- Perform a χ^2 analysis
 - Look at χ^2 to set limits on parameters

Hep-ph/0206162, 18 Jun 2002

Formulation of χ^2

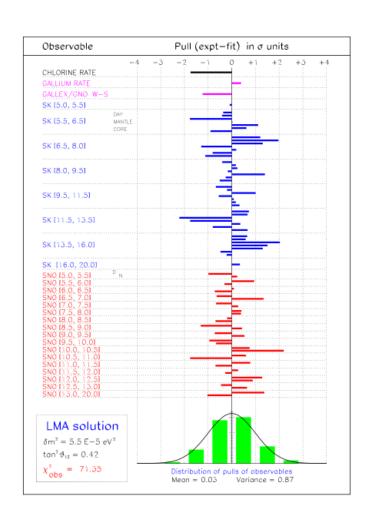
In formulating χ^2 , linearize effects of the systematic uncertainties on data and theory comparison

$$\chi_{pull}^{2} \equiv \min_{\{\xi\}} \left[\sum_{n=1}^{N} \left(\frac{R_{n}^{\exp t} - R_{n}^{theor} - \sum_{k=1}^{N} (c_{n}^{k} \xi_{k})}{u_{n}} \right)^{2} + \sum_{k=1}^{K} \xi_{k}^{2} \right]$$

- > Uncertainties u_n for each observable
- Introduce "random" pull x_k for each systematic
 - > Coefficients c_k^n to parameterize effect on *nth* observable
 - > Minimize χ^2 with respect to x_k
 - > Look at contours of equal $\Delta \chi^2$

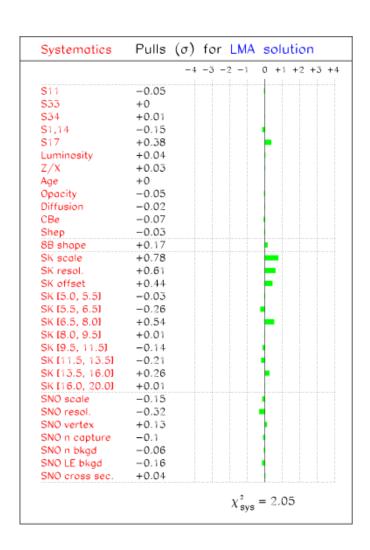
Solar Neutrino Results

- **Can look at "pulls" at \chi^2 minimum**
 - Have reasonable distribution
 - Demonstrates consistency of model with the various measurements
 - Can also separate
 - > Agreement with experiments
 - > Agreement with systematic uncertainties



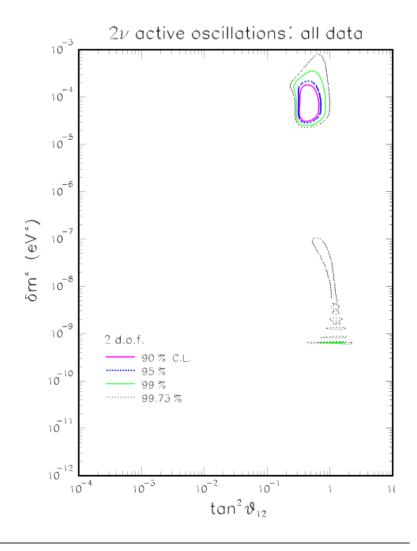
Pull Distributions for Systematics

- **Pull distributions for** x_k also informative
 - Unreasonably small variations
 - Estimates are globally too conservative?
 - Choice of central values affected by data
 - > Note this is NOT a blind analysis
- But it gives us some confidence that intervals are realistic



Typical Solar Neutrino Contours

- Can look at probability contours
 - Assume standard χ^2 form
 - Probably very small probability contours have relatively large uncertainties



Hybrid Techniques

- A popular technique (Cousins-Highland) does an "averaging" of the pdf
 - Assume a pdf for nuisance parameter g()
 - "Average" the pdf for data x

$$p_{CH}(x \mid \theta) \equiv \int p(x \mid \theta, \lambda) g(\lambda) d\lambda$$

- Argue this approximates an ensemble where
 - > Each measurement uses an apparatus that differs in parameter /
 - The pdf g(I) describes the frequency distribution
 - > Resulting distribution for x reflects variations in /
- Intuitively appealing

See, for example, J. Conrad et al.

- But fundamentally a Bayesian approach
- Coverage is not well-defined

Computationally Challenging

- **■** In many measurements
 - Can have several dozen sources of systematic uncertainty
 - Creating a tractable ensemble is not possible
 - Even the definition of the ensemble is controversial
- Current state of the art is to perform a Bayesian-like "marginalization"
 - Treat the new probability function in the same way as before
 - But
 - > Not clear how to evaluate coverage
 - > Not strongly grounded in theory

2. What is Significance?

Typical HEP approach

- Have a set of observations
- We say the data are "statistically significant" when
 - > We can use data to support a specific hypothesis, eg.
 - "We see a phenomenom not predicted by the Standard Model"
 - "We report the discovery of X"
 - > The interpretation eliminates a number of competing hypotheses
 - > The conclusion will not likely be altered with larger statistics or further analysis

Want a statistical framework that

- Measures "degree of belief"
- Ensures robust conclusions

Some "Obvious" Discoveries

■ Observation of B° B° Mixing

- $24.8 \pm 7.6 \pm 3.8$ like-sign events vs $25.2 \pm 5.0 \pm 3.8$ opposite sign
- "3σ" discovery

Albrecht et al., PLB 192, 245 (1987)

W Boson

– 6 ev events, no background!

Upsilon

Arnison et al., PLB 122, 103 (1983)

- 770 events on 350 background
- Described as "significant" but no measure of it

Herb et al., PRL 39, 252 (1977)

B mesons

- 18 events on 4-7 background
- No measure of significance

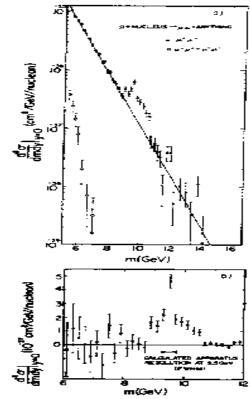
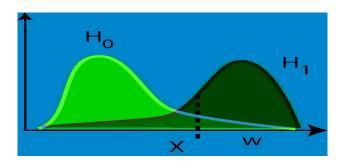


FIG. 3. (a) Measured dimuon production cross sections as a function of the invariant mass of the muon pair. The solid line is the continuum fit outlined in the text. The equal-sign-dimuon cross section is also shown. (b) The same cross sections as in (a) with the smooth exponential continuum fit subtracted in order to reveal the 9-10-GeV region in more detail.

Behrends et al., PRL 50, 881 (1983)

A Frequentist Definition

- Significance defined in context of "hypothesis testing"
 - Have two hypotheses, H₀ and H₁, and possible set of observations X
 - > Choose a "critical region", w, in the space of observations X
 - > Define **significance**, α , as probability of $X \in w$ when H_0 is true
 - > Define the **power**, 1- β , as probability of $X \in w$ when H_1 is true



Typically, H0 is "null" hypothesis

- In this language, an observation is "significant" when
 - Significance α is small & β is small
 - > Typically a < few 10^{-5}

Some Comments on Formal Definition

Definition depends on

- Choice of statistic X
 - > Left up to the experimenter as part of design
 - > More on that later
- Choice of "critical region" w
 - > Depends on hypotheses
 - > Often chosen to minimize systematic uncertainties?
 - > Not necessarily defined in advance!
- Definition of "probability"
 - > A frequentist definition
 - > Raises issue of how systematic uncertainties are managed
- Choice of α and β
 - > Matter of "taste" and precedent
 - > A small α is safe, but comes with less "discovery reach"

More fundamentally:

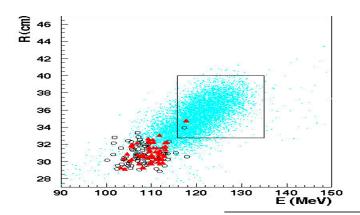
— Is this an adequate definition of "significance?"

The Choice of Statistic & Critical Region

- Choice of statistic motivated by specific experimental design
 - Informed by the measurement to be made
 - Critical region is chosen at the same time
 - Good example: E787/E949 search

$$K^+ \rightarrow \pi^+ \nu \nu$$

- > Look for $\pi^+ \rightarrow \mu^+ \nu$ decay
- > Define a "box" a priori
 - Expected 0.15±0.05 event bkgd



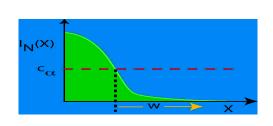
Only two events Observed

Significance 0.02%

Have used the "box" Since 1988

Optimal Tests: Neyman-Pearson

- In some cases, possible to identify the "most powerful" test
 - Must involve only "simple" hypotheses (no free parameters)
 - > PDF's given by f_i(X)
 - > Must have two hypotheses
 - For given α , can identify region to minimize β for alternative H_1
 - > Order observations by $I_N(X) \equiv f_0(X) / f_1(X)$
 - > Can minimize β by choosing critical region as all X s.t. $l_N(X) \ge c_a$
 - Chose c_a so that $\int_{w} \mathbf{f}_0(\mathbf{X}) d\mathbf{X} = \alpha$



Caveats to Neyman-Pearson

- Neyman-Pearson limited
 - Only true for simple hypotheses
 - > Not for composite hypotheses (where unknown parameter)
 - Compares two hypotheses
 - > Depends on alternative hypothesis
 - > Makes results model-dependent
- But does give some insight
 - The ratio $I_N(X)$ is proportional to ratio of likelihoods

$$f_0(X) / f_1(X) \cong L_0(X) / L_1(X)$$

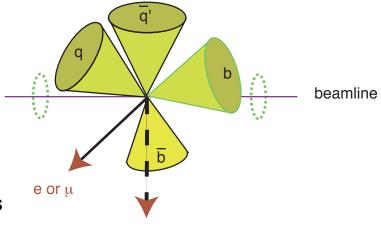
Provides guidance for definition of effective tests

Definition of Critical Region

- Challenge is not to bias choice of critical region with data
 - However, observer required to understand data
 - > Identify instrumental pathologies
 - > Identify unexpected backgrounds
 - > Estimate systematic uncertainties
 - > Verify stable run conditions
 - Studies may lead to unconscious bias (see, eg. RPP plots!)
- "Blind" analyses are popular
 - > Study data complementary to signal
 - > However, implementation varies
 - SNO's pure D₂O results set aside about 40% of data
 - Not clear that this really helps!
 - > Even E787/E949 reserve right to examine background rejection

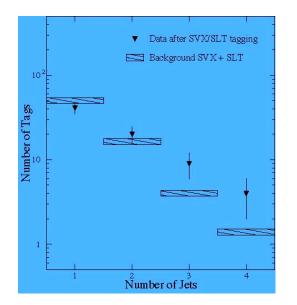
Significance in Counting Experiments

- Top quark search is textbook example
 - By 1991, CDF had ruled out top quark with mass < 91 GeV/c²
 - Searching for top quark pair production and decay into
 - > Lepton + n + jets (20%)
 - > Dilepton + n + jets (8%)
- In a sample of 20 pb⁻¹, expected handful of events
 - Large background from W + jets
 - "Fake" b-quark tags



Definition of the Measurement

- Defined clear strategy in 1990
 - Identify lepton+jets and dilepton candidates
 - Count "b" tags in lepton+jet events
 - > Use two b-tagging algorithms
 - Use events with 1-2 jets as control
 - Signal sample events with ≥3 jets
 - Expected 3.5 evts $(M_{top}=160 \text{ GeV/c}^2)$



Expect **5.4±0.4** tags from background

Observed **13** tagged "b jets" in 10 evts

7 SVX tags 6 lepton tags

- For dileptons:
 - > Require 2 or more jets
 - > Expected 1.3 evts $(M_{top}=160 \text{ GeV/c}^2)$
 - > Observed 2 evts, bkd of 0.6±0.3 evts

Significance Calculation

- Calculated probability of background hypothesis
 - Dilepton significance $\alpha_{dil} = 0.12$
 - Used MC calculation
 - > Treated background uncertainty as a normally distributed uncertainty on acceptance
 - For lepton+jets, MC gives
 - > SVX b tags: $\alpha_{SVX} = 0.032$
 - > SLT b tags: $\alpha_{SLT} = 0.038$
- **■** To combine, take into account correlations
 - Gives $\alpha_{tot} = 0.0026$
 - If assume independent, then

$$\alpha_{tot} = \alpha_{dil} \alpha_{ljets} \left[1 - \ln(\alpha_{dil} \alpha_{ljets}) \right]$$

- > Gives $\alpha_{tot} = 0.0088$
- Collaboration reported only "evidence for top quark...."
 - > Factor 2 more data -- α_{tot} = few 10⁻⁵

Power of the Top Quark Statistic

- Choice of statistic driven by need to reduce background
 - Note $\varepsilon_{ljets} = 0.074$ before b-tagging
 - > Predict 12 events signal and 60 events background
 - > Tagging efficiency 0.40
 - Background "efficiency" 0.09
 - Definition of "power" problematic
 - > Arbitrary
 - Power of lepton+jets selection? b-tagging?
 - A posteriori choice of $X = N_{tags} + N_{dil}$
 - > Experimenter chooses "critical region" based on hypothesis
 - Lepton+jets Higgs search useδ different selection

$$WH \rightarrow l \nu b b$$

- Usually characterized by sensitivity
 - > Size of expected signal

Significance using Data Distributions

- Measurements often involve continuous observables
 - Can assess agreement with "null" hypothesis
 - > Generally "goodness-of-fit" tests
- Number of tests in common use
 - $> \chi^2 \text{ Test}$
 - Depends on choice of binning
 - Limited to "large" statistics samples
 - Bin contents > 5-10 (?)
 - > Smirnoy-Cramer-Von Mises
 - Define statistic based on cumulative distributions $S_N(x)$

$$W^2 \equiv \int \left[S_N(X) - F(X) \right]^2 f(X) dX$$

- Probability distribution for W² independent of distribution
 - $E[W^2] = (6N)^{-1}$ and $V[W^2] = (4N-3)/180N^3$
- > Kolmogorov-Smirnov
 - Popular form of test based on $S_N(x)$
 - Distribution for D_N proportional to χ^2

$$D_{N} \equiv \max |S_{N}(X) - F(X)|$$

Multivariate Significance

Often difficult to reduce data to 1-dimensional statistic

- Typical case has several variables
 - > Different correlations between signal and "null" hypothesis
 - > Any straightforward transformation causes loss of information
- Several techniques used
 - > Characterize significance of each component and then combine into a single measure of significance
 - > More sophisticated, e.g.
 - Combine information using any one of the techniques discussed by Prosper, Towers, etc.

In practice, two approaches:

- 1. Assume independent statistics
 - Check for any correlations
- 2. Model correlations using MC approaches or "bootstrapping"
 - Computationally expensive
 - Relies on understanding correlations

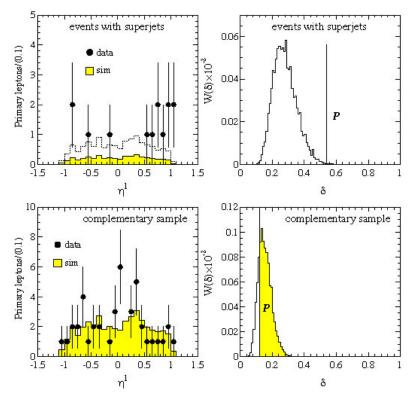
An Infamous Example: "Superjets"

CDF Run I data contained

- Unusual lepton + v + 2,3 jet events
 - > 13 events with jets that are both SLT and SVX tagged
 - Expect 4.4±0.6 events from background sources
 - Significance is 0.001!
- Led to examination of 9 kinematical distributions
 - P_T & η for leptons & jets, and azimuthal angle between lepton, jet
 - $-\ P_T$ and η for lepton+jet system
 - > Perform independent K-S tests
 - Use control sample defined by events without a "supertag"
 - Combined significance of 1.6x10⁻⁶
 - > Also defined a new statistic
 - Sum of K-S distances
 - MC gives significance of 3.3x10⁻⁶

K-S Tests on Superjet Data

Lepton η distribution



Some approximations:

- > Control sample events w/o superjet
- > Randomly pick 13 of 42 events

Comments on Superjet Study

- **■** Choice of statistic (number of superjets) problematic
 - Made a posteriori after anomaly noted
 - > Significance difficult to assess
 - Ignored lepton + 1 jet data (where one observes a deficit of events)
 - > Why?
- Choice of distributions also problematic
 - Justified a posteriori
 - Correlations difficult to assess
- Aside:
 - Interpretation of excess requires unusual physics process
 - > Not a problem in itself
 - > But small statistics allow for many hypotheses

Some Practical Proxies for Significance

- **HEP suffers Gaussian tyranny**
 - Many people will quote numbers of " σ " as measures of significance
 - > Belief that this can be more readily interpreted by lay person
 - Shorthand for the significance of an ns measurement
 - > 5σ seems to have become conventional "discovery threshold"
 - $\alpha = 2.8 \times 10^{-7}$
 - Used for LHC discovery reach
- In situations where expected signal S and background B
 - Various figures of merit
 - > S/N -- signal versus noise
 - Doesn't scale with N
 - > More natural definition is

$$\frac{S}{\sqrt{B}}$$

See papers by Bityukov & Krasnikov for more discussion

- Just normal Gaussian estimate of # of s.d.
- Does scale with N

The "Flip-Flopping" Physicist

- Feldman & Cousins highlighted the problem of "flip-flopping"
 - A physicist who uses
 - > One set of criteria to set a limit in the absence of a signal
 - > Different criteria to claim a significant signal
 - Results in confidence intervals with ill-defined frequentist coverage
- This should be anticipated in any experiment that wishes to be sensitive to small signals
 - F-C propose their "unified approach"

What About Reverend Bayes?

Bayesian approach to classifying hypotheses is

$$\frac{P(H_1 \mid X)}{P(H_0 \mid X)} = \frac{P(X \mid H_1)}{P(X \mid H_0)} \bullet \frac{\pi(H_1)}{\pi(H_0)}$$

- Few comments:
 - > P(XlH_i) is typically likelihood
 - > Only meaningful in comparison of two hypotheses
 - > Can handle composite hypotheses readily
 - Just integrate over any "nuisance" variables
- Is it used? Not often...
 - Only relative "degree of belief"
 - > Requires at least two hypotheses
 - "Prior" avoidance
 - Challenges where single points in parameter space are important
 - > Is sin2b = 0?

Some Recommendations

- Define strategy in advance of data analysis
 - Otherwise, significance estimates could and will be biased
 - "Blind" analyses can play a role
 - > However, this should not limit the ability to "explore" the data
- Take consistent approach to CL setting & signal measurement
 - Avoid "flip-flopping" -- F-C offers one approach to this problem
- Describe clearly how you are determining "significance"
 - Things to remember:
 - > Definition of probability
 - > Definition of critical region
 - > What decisions were taken a posteriori?

3. Blind Analyses

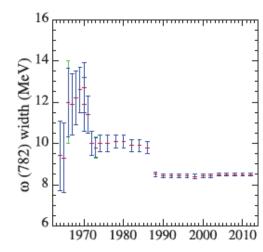
■ To make inferences, we have to assume:

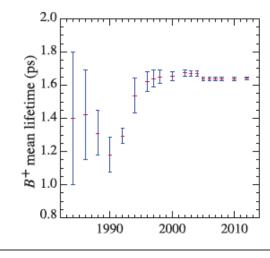
- Random events free from correlation
- More data results in greater precision
- Procedures used are free of bias

Are these reasonable assumptions?

■ PDG has a set of "history" plots

- Reveal that some measurements are just wrong
- Post mortems have indicated that some bias had crept into analysis
 - > Looking for the right answer?
 - > Selection biased by data itself?





Piled Higher and Deeper

Piled Higher and Deeper by Jorge Cham

www.phdcomics.com

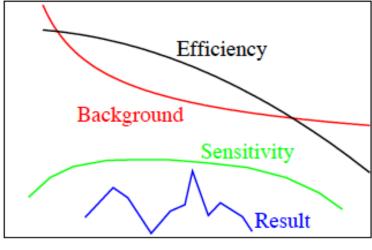
WWW.PHDCOMICS.COM

title: "Check it" - originally published 3/31/2014

How Can This Happen?

■ Simple carton illustrates a typical situation

- One is "exploring" the data
- Finds a "cut" that miraculously reduces the background with high efficiency
- But what is the right value of the cut?
- In some cases, it is not so clear
 - Experimenter can make an arbitrary choice
 - But behavioural psychologists claim there is no such thing!



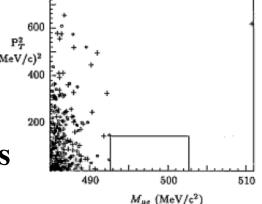
Cut Value

A. Roodman, ArXiv:0312102v1 (2003)

Avoiding Experimenter's Bias

A standard solution has been to formally "blind" the analysis

- Define a priori "signal region" or "measurable"
 that will not be looked at during analysis
- Define a procedure for "opening the box"



- Now been used in HEP for about 20 years
 - Popularized by the BaBar collaboration
 - > committed to using "blind techniques"
 - Goes back to 1662 by John Baptista von Helmont
 - > Adopted in the biomedical community as the "gold standard" double-blind studies as far back as 1948

Too Good to be True?

Actually, works pretty well in practice

Generally accepted as one strategy for reducing the bias

Some pitfalls/challenges:

- "Blinding" obscures an unanticipated instrumental or theoretical problem
 - > Discover that half the data was missed (true example)!
- After "opening the box", procedure changes because of ancillary studies or measurements
 - > Current example in ATLAS is where
 - Box opened and 5 signal events
 - New "jet cleaning tool being implemented" kills 1 event
 - 17% of background events also reduced, though 9 events in "sideband" all survived
 - Do you use the new "jet cleaning tool"?