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1. Introduction: Some Tools

m Our understanding of high
energy hadron collisions has
limits

— It’s why we are studying them in
the first place

— But some of the limitations in
knowledge “‘get in the way”’

— Progress is made by being able to
control or minimize the
uncertainties that issues not
relevant to your analysis

m Generally, particle physicists
have become pretty good at
doing basic statistics

— But we do get into trouble

— Discuss a number of tools (and
pitfalls) in common use

uncertainties

— Essential, but often riddled with
assumptions and approximations

Significance — how do we make
statements about belief from
data?

— But we do get into trouble

Blind Analyses

— All about avoiding
unconscious or conscious bias

— But there are challenges

m Resources Available

— No re-invention of wheels
please
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Literature Summary

m Some classic statistics resources

— F. Solmitz, “Analysis of Experiments in Particle Physics”, Annu.
Rev. Nucl. Sci. 1964:14, 375-402.

— J. Orear, “Notes on Statistics for Physicists”, CLNS 82/511 (1982),
http://pages.physics.cornell.edu/p510/w/images/p510b/6/62/
Notes on_Statistics for Physicists.pdf

m Systematic Uncertainty References

— P. Sinervo, “Definition and Treatment of Systematic Uncertainties”,
http://www .slac.stanford.edu/econt/C030908/papers/TUATO004 .pdf
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2. Systematic Uncertainties

m Systematic uncertainties play key role in physics
measurements
— Few formal definitions exist, much “oral tradition”
— “Know” they are different from statistical uncertainties

Random Uncertainties

Systematic Uncertainties

Arise from stochastic O Due to uncertainties in the
fluctuations apparatus or model
Uncorrelated with previous O Usually correlated with
measurements previous measurements
Well-developed theory O Limited theoretical framework
Examples O Examples

O measurement resolution
O finite statistics
O random variations in system

O calibrations uncertainties
O detector acceptance

O poorly-known theoretical
parameters
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Literature Summary

m Increasing literature on the topic of “systematics”
A representative list:

R.D.Cousins & V.L. Highland, NIM A320, 331 (1992).
C. Guinti, Phys. Rev. D 59 (1999), 113009.

G. Feldman, “Multiple measurements and parameters in the unified approach,”
presented at the FNAL workshop on Confidence Limits (Mar 2000).

R.J. Barlow, “Systematic Errors, Fact and Fiction,” hep-ex/0207026 (Jun 2002), and
several other presentations in the Durham conference.

G. Zech, “Frequentist and Bayesian Confidence Limits,” Eur. Phys. J, C4:12 (2002).

R.J. Barlow, “Asymmetric Systematic Errors,” hep-ph/0306138 (June 2003).

A. G.Kim et al., “Effects of Systematic Uncertainties on the Determination of
Cosmological Parameters,” astro-ph/0304509 (April 2003).

J. Conrad et al., “Including Systematic Uncertainties in Confidence Interval
Construction for Poisson Statistics,” Phys. Rev. D 67 (2003), 012002

G.C Hill, “Comment on “Including Systematic Uncertainties in Confidence Interval
Construction for Poisson Statistics”,” Phys. Rev. D 67 (2003), 118101.

G. Punzi, “Including Systematic Uncertainties in Confidence Limits”, CDF Note in
preparation.
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Case Study #1: W Boson Cross Section

m Rate of W boson production
— Count candidates N+N,

— Estimate background
N, & signal efficiency e

o=(N,—N,)/(eL)
— Measurement reported as

0 =2.64+0.01 (stat)
+0.18 (syst) nb

— Uncertainties are

—_ stat
o, =0, W/I/NC

G,y 200N, IN,)" + (Sele)’ + (SL/L)

CDF Run Il Preliminary, 72pb‘1

[
S
S
=
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PHY2407S 6



Definitions are Relative

m Efficiency uncertainty estimated using Z
boson decays et
— Count up number of Z candidates N "¢
> Can identify using charged tracks

> Count up number reconstructed N,<"

recon cand recon
NZ recon NZ (NZ — NZ )
E=—*— = 0€= —
N, N,
Lessons:
— Redefine uncertainties « Some systematic uncertainties
are really “random”
2 .
o O'O\/l/NC +(0e/€) » Good to know this

— e Uncorrelated

* Know how they scale
* May wish to redefine
e Call these
“CLASS 17 Systematics

= 00\/(5Nb /Nb)2 + (6L/L)2

syst —
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Top Mass Good Example

[]
v
T

2-tag: 99 events
[]pata
[]signal+Bkgd
D Bkgd only

m Top mass uncertainty in template analysis

— Statistical uncertainty from shape of
reconstructed mass distribution and
statistics of sample

Events/(10 GeV/c)
— N
oo

-
(=]
T

CDF Run Il Preliminary (1.9 fb™)

o
TTTTT

— Systematic uncertainty coming from jet o %
energy scale (JES) g ,
> Determined by calibration studies, EE %E:g.ak;d
dominated by modelling uncertainties o e o
> 5% systematic uncertainty i
aF
m Latest techniques determine JES AR 10, 120, %0

uncertainty from dijet mass peak (W->jj)

— Turn JES uncertainty into a largely
statistical one

Jet Energy Scale from W—jj
E CDF Run Il Preliminary

e
R

wa Systematic Uncertainty
from W—jj Energy Scale Only

(2]
T

— Introduce other smaller systematics %2.5:—
M,, =171.8+19(stat +JES)+ 1.0 (syst) GeV/c’
=171.942.1GeV/c? %

Integrated Luminosity (fb'1)
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Case Study #2: Background Uncertainty

m Look at same W cross section analysis
— Estimate of N, dominated by QCD backgrounds

> Candidate event
— Have non-isolated leptons

Isolation vs. Missing Transverse Energy
' CDF Run Il Preliminary

N
T

.. 184 | -
— Less missing energy 165 | J‘ L=72pb"
: : 145
> Assume that 1solation ot QCD Background _ B

and MET uncorrelated c A

> Have to estimate the
uncertainty on N,¢¢P

Isolation Fraction

-". W-> e v Candidates
-

. 10 20 30 40 50 60 70 80 86 10
— No direct measurement E. (GeV)

has been made to verify the model

— Estimates using Monte Carlo modelling have large
uncertainties
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Estimation of Uncertainty

m Fundamentally different class of uncertainty
— Assumed a model for data interpretation
— Uncertainty in NV,2¢P depends on accuracy of model

— Use “informed judgment” to place bounds on one’ s
ignorance

> Vary the model assumption to estimate robustness

> Compare with other methods of estimation

m Difficult to quantify in consistent manner

— Largest possible variation?

. 9 Lessons:
> Asymmetric’ . -

e Some systematic uncertainties
— Estimate a “1 s” interval? reflect ignorance of one’ s data
_ Take A e Cannot be constrained by

O~—n?9 observations
V12 e Call these
“CLASS 2”7 Systematics
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Case Study #3: Boomerang CMB Analysis

m Boomerang is one of several

OF il < s y.=

o o A R L g T AP
CMB probes S / T Tk o "T\\
— Mapped CMB anisoptropy * :‘»"_‘x’g é? B 50 i oy G C

— Data constrain models of the - ' \\ TS \’/

early universe W H < A 3 ;J(

- ‘“\_____::-.f;'f" ;i w o4

m Analysis chain: S ’

— Produce a power spectrum for
the CMB spatial anisotropy

> Remove instrumental effects through a complex
signal processing algorithm

— Interpret data in context of many models with
unknown parameters

PHY2407S
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Incorporation of Model Uncertainties

m Power spectrum extraction .
includes all instrumental I S
effects /
— Effective size of beam .

— Variations in data-taking
procedures

m Use these data to extract
7 cosmological parameters
— Take Bayesian approach

> Family of theoretical models defined by 7 parameters

> Define a 6-D grid (6.4M points), and calculate likelihood
function for each

PHY?2407S 12



Marginalize Posterior Probabilities

m Perform a Bayesian
“averaging” over a grid
of parameter values

— Marginalize w.r.t. the

other parameters

> NB: instrumental
uncertainies included
In approximate manner

— Chose various priors
in the parameters

m Comments:

— Purely Bayesian analysis with
no frequentist analogue

— Provides path for inclusion of
additional data (eg. WMAP)

0,h? 0 h? n,

Lessons:
e Some systematic uncertainties
reflect paradigm uncertainties
* No relevant concept of a
frequentist ensemble
e Call these
“CLASS 3”7 Systematics
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Latest Planck Results

m The prior uncertainties

dominate
Planck
Parameter Best fit 68% limits

Qh* . .. 0.022068  0.02207 £ 0.00033
QAR ... 0.12029 0.1196 £ 0.0031
1006y - o ovovee e nt . 1.04122 1.04132 £ 0.00068
L 0.0925 0.097 £0.038
T 0.9624 0.9616 £ 0.0094
In(10A,) .......... 3.098 3.103 £0.072
Qp o 0.6825 0.686 = 0.020
Q. 0.3175 0.314 £0.020

o S 0.8344 0.834 = 0.027
A 11.35 11.4432

Hy ............... 67.11 67414
10°A, ............. 2.215 223 +£0.16
Quh®. .. 0.14300 0.1423 £ 0.0029
Qui® . o . 0.09597  0.09590 = 0.00059
) 0.247710 0.24771 £0.00014
Age/Gyr........... 13.819 13.813 £ 0.058

W+1)C,/2m [uK?]

D=

A9, [uK?]
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Planck Collaboration,
1303.5076v3 (2014)
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Proposed Taxonomy for Systematic
Uncertainties

m Three “classes” of systematic uncertainties

— Uncertainties that can be constrained by ancillary
measurements

— Uncertainties arising from model assumptions or
problems with the data that are poorly understood

— Uncertainties in the underlying models

m Estimation of Class 1 uncertainties straightforward
— Class 2 and 3 uncertainties present unique challenges

— In many cases, have nothing to do with statistical
uncertainties

> Driven by our desire to make inferences from the data
using specific models

PHY2407S 15



Estimation Techniques

No formal guidance on how to define a systematic
uncertainty

— Can identify a possible source of uncertainty

— Many different approaches to estimate their magnitude

> Determine maximum effect D o= A ?
2
General rule: A
o=—+1
— Maintain consistency with definition of V12

statistical intervals
— Field is pretty glued to 68 % confidence intervals

— Recommend attempting to reflect that in magnitudes of
systematic uncertainties

— Avoid tendency to be “conservative”
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Estimate of Background Uncertainty in Case

Study #2

m Look at correlation of Isolation and MET

— Background estimate

W — e v QCD Background dependence on Iso value

increases as isolation
(11 ” . °
cut is raised

— Difficult to measure or
accurately model

w0
o
o
o

2500

N
o
o
o

1500

> Background comes
primarily from very
rare jet events with
unusual properties

1000

# QCD Bkg evts using Iso vs. §lr Method

0

T
-

5001 March 2002 - :
- Jan 2003
_l 111 I Ll 11 I L1l ; Ll 11 I L1l l Ll 11 I L1l l 11

: CDF Run Il Preliminary

y #H

38628 W — e v Candidates

NQCD bkg =1344 + szstat

+

'
-

~
N

T
o

0

> Very model-dependent

m Assume a systematic uncertainty
the observed variation

5162 03 o4 05 68 07 o8 08 1
Isolation cut value

representing

— Authors argue this is a “conservative” choice
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Cross-Checks Vs Systematics

m R. Barlow makes the point in Durham(PhysStat(2)

— A cross-check for robustness is not an invitation to
introduce a systematic uncertainty

> Most cross-checks confirm that interval or limit 1s robust,

— They are usually not designed to measure a systematic
uncertainty

m More generally, a systematic uncertainty should

— Be based on a hypothesis or model with clearly stated
assumptions

— Be estimated using a well-defined methodology
— Be introduced a posteriori only when all else has failed

PHY2407S 18



Statistics of Systematic Uncertainties

m Goal has been to incorporate systematic uncertainties
into measurements in coherent manner
— Increasing awareness of need for consistent practice

> Frequentists: interval estimation increasingly sophisticated

— Neyman construction, ordering strategies, coverage properties

> Bayesians: understanding of priors and use of posteriors
— Objective vs subjective approaches, marginalization/conditioning

— Systematic uncertainties threaten to dominate as precision
and sensitivity of experiments increase

m There are a number of approaches widely used
— Summarize and give a few examples
— Place it in context of traditional statistical concepts

PHY2407S 19



Formal Statement of the Problem

m Have a set of observations x,, i=1,n
— Associated probability distribution function (pdf) and

likelihood function p(x,16) = £(6 H p(x,16)

> Depends on unknown random parameter g

> Have some additional uncertainty in pdf

— Introduce a second unknown parameter /
= N
H l-p (Xl 9’ /l )

= In some cases, one can identity statistic y; that
provides information about /

£(6,A)= Hi,jp(xl.,y ;16.2)

— Can treat / as a “nuisance parameter”

PHY2407S
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Bayesian Approach

m Identify a prior p(/) for the “nuisance parameter” /

— Typically, parametrize as either a Gaussian pdf or a flat
distribution within a range (“tophat”)

— Can then define Bayesian posterior
L(6,A) m(A) d6 dA
— Can marginalize over possible values of /

> Use marginalized posterior to set Bayesian credibility
intervals, estimate parameters, etc.

m Theoretically straightforward ....
— Issues come down to choice of priors for both g,/
> No widely-adopted single choice

> Results have to be reported and compared carefully to
ensure consistent treatment
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Frequentist Approach

m Start with a pdf for data p(x,,y;16,1)

— In principle, this would describe frequency
distributions of data in multi-dimensional space

— Challenge is take account of nuisance parameter
— Consider a toy model Y par

p(x,y l.v)=G(x—(u+v).)G(y-v,s) °

> Parameter s is Gaussian 4 ~———

width for n L : . _
m Likelihood function (x=10, y=5) Likelihood
— Shows the correlation ; p————
— Effect of unknown n :

PHY2407S 22



Formal Methods to Eliminate Nuisance
Parameters

m Number of formal methods exist to eliminate
nuisance parameters
— Of limited applicability given the restrictions
— Our “toy example” is one such case

> Replace x with r=x-y and parameter n with

2
s
VEv+u//
1+s°

s <o a v

> Factorized pdf and can now integrate over n’
> Note that pdf for m has larger width, as expected

— In practice, one often loses information using this
technique
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Alternative Techniques for Treating Nuisance
Parameters

m Project Neyman volumes onto parameter of
interest .
— “Conservative interval” g, probabilty contour

— Typically over-covers,
possibly badly

confidence contour

R

m Choose best estimate of
nuisance parameter

— Known as “profile method”

— Coverage properties

require definition of ensemble From G. Zech

— Can possible under-cover when parameters strongly
correlated

> Feldman-Cousins intervals tend to over-cover slightly
(private communication)
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Example: Solar Neutrino Global Analysis

m Many experiments have measured solar neutrino flux
— Gallex, SuperKamiokande, SNO, Homestake, SAGE, etc.
— Standard Solar Model (SSM) describes n spectrum
— Numerous “global analyses” that synthesize these

m Fogli et al. have detailed one such analysis
— 81 observables from these experiments
— Characterize systematic uncertainties through 31 parameters
> 12 describing SSM spectrum
> 11 (SK) and 7 (SNO) systematic uncertainties

m Perform a x? analysis

— Look at %2 to set limits on parameters
Hep-ph/0206162, 18 Jun 2002
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Formulation of }°

m In formulating ¥2, linearize effects of the systematic
uncertainties on data and theory comparison

R;:xpt _R:lheor _Z(C’fgk) .

N
Kot = min, ., 2 T 2513

n=1 un k=1

> Uncertainties u, for each observable

— Introduce “random” pull x, for each systematic
> Coefficients ¢,” to parameterize effect on nth observable
> Minimize y? with respect to x,

> Look at contours of equal Ay~
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Solar Neutrino Results

m Can look at “pulls” at ¥?
minimum
— Have reasonable distribution

— Demonstrates consistency of
model with the various
measurements

— Can also separate
> Agreement with experiments

> Agreement with systematic
uncertainties

Observable Pull (expt=fit) in o units

CHLORINE RATE

—

LMA solution
dm*=55E-5¢eV?

o
1 €
Clo
c III IIlIl IIII
G o
8o
EE4
L
12
[=%=4
wmm
®E
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Pull Distributions for Systematics

m Pull distributions for x,

alSO informative Systemotics Pulls (0_)‘ ffr_jU_vM :ojtjtjflid _
— Unreasonably small variations o
So4 +0.01
— Estimates are globally too s7 r058
. Luminosity +0.04
conservative? Z/x +0.05
. Opacity -0.05
— Choice of central values ifusier o0
affected by data w017
SK scale +0.78
> Note this is NOT a 3K offset iy
. . SKI[5.0, 5.3) -0.05
blind analysis Skmses 02
SK [6.5, 8.0) +0.54
SK 8.0, 9.3) +0.01
o N SK 9.5, 11.5] -0.14
m But it gives us some (115,138 021
. SK[16.0, 20.0] +0.01
confidence that intervals SNOscale 0.5
° ° :‘j\o vertex +0 j‘;\
are realistic SRS
SNO LE bkgd -0.16
SNO cross sec +0.04

X:sys =205
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Typical Solar Neutrino Contours

m Can look at probability
contours
— Assume standard %2 form

— Probably very small
probability contours have
relatively large
uncertainties

(eV*)

om-

0

0 -
10

2v active oscillations. all data

o

tan’9,,

PHY2407S
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Hybrid Techniques

m A popular technique (Cousins-Highland) does an
“averaging’ of the pdf
— Assume a pdf for nuisance parameter g(/)
— “Average” the pdf for data x

Peu(x16)= | p(x16.0)g(2) dA

— Argue this approximates an ensemble where

> Each measurement uses an apparatus that differs in
parameter /
— The pdf g(/) describes the frequency distribution

> Resulting distribution for x reflects variations in /

L] Intuitively appealing See, for example, J. Conrad et al.

— But fundamentally a Bayesian approach
— Coverage is not well-defined
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Computationally Challenging

= In many measurements

— Can have several dozen sources of systematic
uncertainty

— Creating a tractable ensemble is not possible
— Even the definition of the ensemble is controversial

m Current state of the art is to perform a
Bayesian-like “marginalization”
— Treat the new probability function in the same way
as before
— But
> Not clear how to evaluate coverage
> Not strongly grounded in theory
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3. What is Significance?

m Typical HEP approach
— Have a set of observations
— We say the data are “statistically significant” when

> We can use data to support a specific hypothesis, eg.
— “We see a phenomenom not predicted by the Standard Model”
— “We report the discovery of X~

> The interpretation eliminates a number of competing
hypotheses

> The conclusion will not likely be altered with larger
statistics or further analysis

m Want a statistical framework that
— Measures “degree of belief”
— Ensures robust conclusions

PHY2407S
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Some “Obvious’ Discoveries

m Observation of B° B °Mixing -
% B ELE e - A T—G
— 24.8 £7.6 £ 3.8 like-sign events vs N e
25.2 £ 5.0 £ 3.8 opposite sign 5 &) h‘z,,\. i
o g 2 ; *s‘*
3o~ discovery Albrecht et al., 205 N
PLB 192, 245 (1987) 29Ty N
= W Boson o | g
— 6 ev events, no background! 1L H{ P
Arnison et al., ‘ I N r‘,&,
] Upsi]()n PLB 122, 103 (1983) e IR

— 770 events on 350 background

— Described as “significant” but no
measure of it

Herb et al.,
PRL 39, 252 (1977) = A A
m B mesons ey
Eiorie S b it tion T The T e o oo ome aec
— 18 events on 4-7 background . e e e D R e i the
. . ehown. () Tha same cropa sections as in (a} with the
— No measure of significance smooth exponsatial comtiauum flt subtracted in order &

Behrends et al.,
PRL 50, 881 (1983)
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A Frequentist Definition

m Significance defined in context of “hypothesis testing”

— Have two hypotheses, H, and H;, and
possible set of observations X

> Choose a “critical region” , w, in the space of observations X
> Define significance, o, as probability of X € w when H,, is true
> Define the power, 1-[3, as probability of X € w when H, is true

Typically, HO is
“null” hypothesis

e

= In this language, an observation is “significant” when
— Significance o is small & 3 is small
> Typically a< few 10
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Some Comments
on Formal Definition

m Definition depends on
— Choice of statistic X
> Left up to the experimenter as part of design
> More on that later
— Choice of “critical region” w
> Depends on hypotheses
> Often chosen to minimize systematic uncertainties?
> Not necessarily defined in advance!
— Definition of “probability”
> A frequentist definition
> Raises issue of how systematic uncertainties are managed
— Choice of o and 3
> Matter of “taste” and precedent
> A small o is safe, but comes with less “discovery reach”

m More fundamentally:
— Is this an adequate definition of “significance?”

PHY2407S 35



The Choice of Statistic & Critical
Region

m Choice of statistic motivated by specific
experimental design
— Informed by the measurement to be made
— Critical region is chosen at the same time
— Good example: E787/E949 search
K*— wfvv
> Look for tr— utv decay

> Define a “box” a priori

— Expected 0.15+0.05 event bkgd Only two events
Observed

Significance 0.02%

Have used the “box”
Since 1988

N
11
©
(=) B AR RN LN RARD [TTTTTTTTTTT Ty
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Optimal Tests:
Neyman-Pearson

m In some cases, possible to identify the “most
powerful” test

— Must involve only “simple” hypotheses (no free
parameters)

> PDF’ s given by £,(X)
> Must have two hypotheses

— For given a, can identify region to minimize 3 for
alternative H,

> Order observations by IN(X) = fo (X) / f1(X)

> Can minimize 3 by choosing critical region as all X
s.t. 1y(X) = ¢,

— Chose c, so that J fO (X) dX = o
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Caveats to
Neyman-Pearson

m Neyman-Pearson limited
— Only true for simple hypotheses

> Not for composite hypotheses (where unknown
parameter)

— Compares two hypotheses
> Depends on alternative hypothesis

> Makes results model-dependent

m But does give some insight

— The ratio I\(X) is proportional to ratio of
likelihoods

{04/ X) = Lo(X) / L,(X)

— Provides guidance for definition of effective tests

PHY2407S
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Definition of
Critical Region

m Challenge is not to bias choice of critical
region with data

— However, observer required to understand data

>

>

>

>

Identify instrumental pathologies
Identify unexpected backgrounds
Estimate systematic uncertainties

Verify stable run conditions

— Studies may lead to unconscious bias (see, eg. RPP plots!)

m “Blind” analyses are popular

>

>

Study data complementary to signal

However, implementation varies
— SNO’ s pure D,O results set aside about 40 % of data
— Not clear that this really helps!

> Even E787/E949 reserve right to examine background

rejection

PHY2407S
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Significance in Counting
Experiments

m Top quark search is textbook example

— By 1991, CDF had ruled out top quark with mass <91
GeV/c?

— Searching for top quark pair production and decay into

> Lepton + n + jets ( 20%)

> Dilepton + n + jets (8%)
&\ /
m In a sample of 20 pb-1,
expected handful of events
— Large background from W + jets s \ 4
— “Fake” b-quark tags v

beamline
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Definition of the Measurement

m Defined clear strategy in 1990
— Identify lepton+jets and dilepton candidates
— Count “b” tags in lepton+jet events

> Use two b-tagging algorithms
— Use events with 1-2 jets as control

— Signal sample events with =3 jets
— Expected 3.5 evts (M., =160 GeV/c?)

top

Observed 13 tagged
EXpeCt 5.4+%0.4 tagS “b jets” in 10 evts

from background

7 SVX tags
6 lepton tags

— For dileptons:
> Require 2 or more jets
> Expected 1.3 evts (M,,,=160 GeV/c?)

> ObservedZ2evts-bkdof 0603 evts———
’ PHY2407S 41



Significance Calculation

m Calculated probability of background hypothesis
— Dilepton significance o(;; = 0.12
— Used MC calculation

> Treated background uncertainty as a normally distributed
uncertainty on acceptance

— For lepton+jets, MC gives
> SVX b tags: ogyx = 0.032
> SLT b tags: o+ =0.038

m To combine, take into account correlations
— Gives oy, = 0.0026
— If assume independent, then
Oty = Olgig Otyjegs [1 — 10(Otyj; Qe )]
> Gives o, = 0.0088
— Collaboration reported only “evidence for top quark....”

> Factor 2 more data -- o, = few 10
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Power of the
Top Quark Statistic

m Choice of statistic driven by need to reduce
background

— Note g, = 0.074 before b-tagging
> Predict 12 events signal and 60 events background

> Tagging efficiency 0.40
— Background “efficiency” 0.09

— Definition of “power” problematic
> Arbitrary

— Power of lepton+jets selection? b-tagging?
+ Ny

— A posteriori choice of X =N,

> Experimenter chooses “critical region” based on hypothesis

— Lepton+jets Higgs search used different selection
WH —> Ilvbb

— Usually characterized by sensitivity

> Size of expected signal
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Significance using Data
Distributions

m Measurements often involve continuous observables
— Can assess agreement with “null” hypothesis
> Generally “goodness-of-fit~ tests

m Number of tests in common use
> % Test

— Depends on choice of binning

— Limited to “large” statistics samples
— Bin contents > 5-10 (?)

> Smirnov-Cramer-Von Mises
— Define statistic based on cumulative distributions Sy(x)

W2 = [ [8,04) -FOOIf(X) dX
— Probability distribution for W? independent of distribution
—  E[W?] = (6N)! and V[W?] = (4N-3)/180N3
> Kolmogorov-Smirnov
— Popular form of test based on Sy(x)
— Distribution for Dy proportional to x>

D, = max‘SN(X) - F(X)‘

PHY2407S
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Multivariate Significance

m Often difficult to reduce data to 1-dimensional statistic

— Typical case has several variables

> Different correlations between signal and “null” hypothesis

>  Any straightforward transformation causes loss of information
—  Several techniques used

>  Characterize significance of each component and then combine into a
single measure of significance

>  More sophisticated, e.g.

— Combine information using any one of the techniques discussed by Prosper,
Towers, etc.

m In practice, two approaches:
1. Assume independent statistics
—  Check for any correlations
2. Model correlations using MC approaches or “bootstrapping”
—  Computationally expensive
— Relies on understanding correlations
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An Infamous Example:
“Superjets”

m CDF Run I data contained
— Unusual lepton + v + 2,3 jet events

> 13 events with jets that are both SL'T and SVX tagged

— Expect 4.4+0.6 events from background sources
— Significance is 0.001!

— Led to examination of 9 kinematical distributions

— P; & n for leptons & jets, and azimuthal angle between
lepton, jet

— Py and n for lepton+jet system

> Perform independent K-S tests
— Use control sample defined by events without a “supertag”
— Combined significance of 1.6x10-¢

> Also defined a new statistic

— Sum of K-S distances
— MC gives significance of 3.3x10-¢
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m Lepton 1 distribution

5

SN

Primary leptons/{0.1)
w

Primary leptons/{0.1)

K-S Tests on
Superjet Data
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— Some approximations:
> Control sample events w/o superjet
> Randomly pick 13 of 42 events
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06 08
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Comments on Superjet Study

m Choice of statistic (number of superjets) problematic
— Made a posteriori after anomaly noted
> Significance difficult to assess

— Ignored lepton + 1 jet data (where one observes a deficit of events)
> Why?

m Choice of distributions also problematic
— Justified a posteriori
— Correlations difficult to assess

m Aside:

— Interpretation of excess requires unusual physics process
> Not a problem in itself
> But small statistics allow for many hypotheses
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Some Practical Proxies for
Significance

m HEP suffers Gaussian tyranny
— Many people will quote numbers of “c” as measures of significance
> Belief that this can be more readily interpreted by lay person

— Shorthand for the significance of an ns measurement

> 50 seems to have become conventional “discovery threshold”
— o = 2.8x107
— Used for LHC discovery reach

m In situations where expected signal S and
background B

— Various figures of merit

> S/N -- signal versus noise See papers by

Bityukov & Krasnikov

— Doesn'’ t scale with N for more discussion

S
> More natural definition is ﬁ

— Just normal Gaussian
estimate of # of s.d.

— Does scale with N
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The “Flip-Flopping~
Physicist

m Feldman & Cousins highlighted the problem of
“flip-flopping”
— A physicist who uses
> One set of criteria to set a limit in the absence of a signal
> Different criteria to claim a significant signal

— Results in confidence intervals with ill-defined frequentist
coverage

m This should be anticipated in any experiment that
wishes to be sensitive to small signals
— F-C propose their “unified approach”
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What About
Reverend Bayes?

m Bayesian approach to classifying hypotheses is

P(H, IX) _ P(XIH,) _ 7(H,)
P(H,1X) P(XIH,) m(H,)

— Few comments:
> P(XIH,) 1s typically likelihood
> Only meaningful in comparison of two hypotheses

> Can handle composite hypotheses readily
— Just integrate over any “nuisance” variables

m Isitused? Not often...
— Only relative “degree of belief”
> Requires at least two hypotheses
— “Prior” avoidance

— Challenges where single points in parameter space are
important

> Is sin2b =09
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Some Recommendations

Define strategy in advance of data analysis
— Otherwise, significance estimates could and will be biased
— “Blind” analyses can play a role
> However, this should not limit the ability to “explore” the data

Take consistent approach to CL setting & signal

measurement
— Avoid “flip-flopping” -- F-C offers one approach to this problem

Describe clearly how you are determining

€l o ° »”»
significance

— Things to remember:
> Definition of probability
> Definition of critical region
> What decisions were taken a posteriori?
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4. Blind Analyses

m To make inferences, we have to assume:

— Random events free from correlation O pr—————

— More data results in greater precision é”;‘ ]

— Procedures used are free of bias %lzf Hl { ]
2100 it :

m Are these reasonable assumptions? S ferrazesessss]
6 :. 1 1 ! L 1o

m PDG has a set of “history” plots

— Reveal that some measurements are
just wrong
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— Post mortems have indicated that some
bias had crept into analysis
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> Looking for the right answer?

> Selection biased by data itself?
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Piled Higher and Deeper

Piled Higher and Deeper by Jorge Cham www.phdcomics.com
|

HowW DO | KNOW
| DIDN'T MAKE A
MISTAKE IN MY

COMPUTER CODE,

D (T CONFIRM

QUADRUPLE
CHECKED m?

WWW.PHDCOMICS.COM
title: "Check it" - originally published 3/31/2014
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How Can This Happen?

m Simple carton illustrates a typical situation

— One 1s “exploring” the data

— Finds a “cut” that miraculously reduces the background with

high efficiency
— But what is the right value of the cut?

m In some cases, it 1s not so clear

— Experimenter can make an
arbitrary choice

— But behavioural psychologists claim
there is no such thing!

Efficiency

Background

/\/\/\Resulr

Cut Value

A. Roodman,
ArXiv:0312102v1 (2003)
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Avoiding Experimenter’s Bias

m A standard solution has been to formally ‘‘blind”
the analysis a00

— Define a priori ‘“signal region” or “measurable” o}
P2

that will not be looked at during analysis orevieyp |

— Define a procedure for “opening the box™

m Now been used in HEP for about 20 years

...........

araal
500 510

— Popularized by the BaBar collaboration Mae (MeV/c?)

> committed to using “blind techniques”™
— Goes back to 1662 by John Baptista von Helmont

> Adopted in the biomedical community as the “gold
standard” — double-blind studies — as far back as 1948
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Too Good to be True?

m Actually, works pretty well in practice

— Generally accepted as one strategy for reducing the bias

m Some pitfalls/challenges:

— “Blinding” obscures an unanticipated instrumental or

theoretical problem

> Discover that half the data was missed (true example)!

— After “opening the box”, procedure changes because of

ancillary studies or measurements

> Current example in ATLAS is where

Box opened and 5 signal events
New “jet cleaning tool being implemented” — kills 1 event

17% of background events also reduced, though 9 events in
“sideband” all survived

Do you use the new “jet cleaning tool”?
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