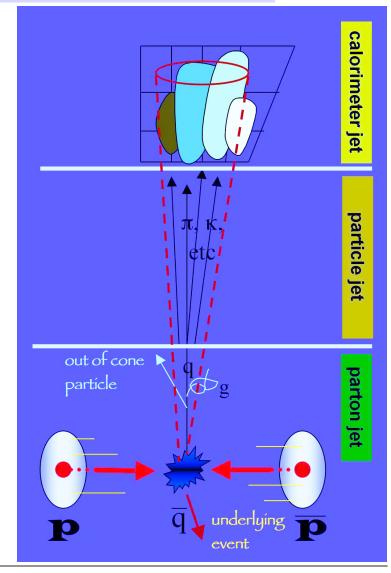
Hard Scattering in Hadron-Hadron Collisions: Physics and Anatomy

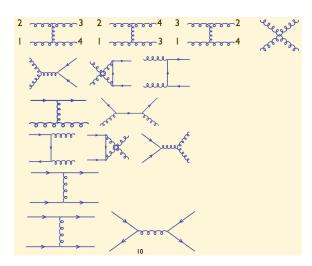

Section 4: Production & Identification

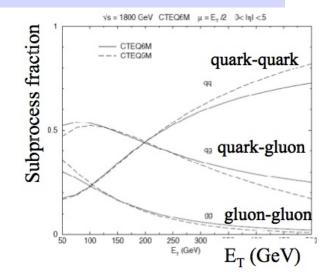
of Jets

- **1.** Definitions of Basic Physics Processes
- 2. Anatomy of a Jet
- **3.** Jet-Finding Algorithms
- 4. Resolutions and Efficiencies
- 5. Heavy Quark Tagging
- 6. Example: Quark Substructure

Definitional Issues

- Confinement in QCD ensures that high P_T quarks & gluons undergo
 - Fragmentation -- ie, dissociation into a "jet" of coloured partons
 - Hadronization -- ie, the partons form colourless, observable hadrons
- Study of jets motivated by
 - Understanding QCD
 - Studying of heavy quarks
 - > b/c quarks that fragment & hadronize before decay
 - > Top quarks that decay before fragmentation/hadronication
 - Searching for new interactions that couple to quarks/gluons
 - Backgrounds to $e, \mu, \gamma \& \tau$

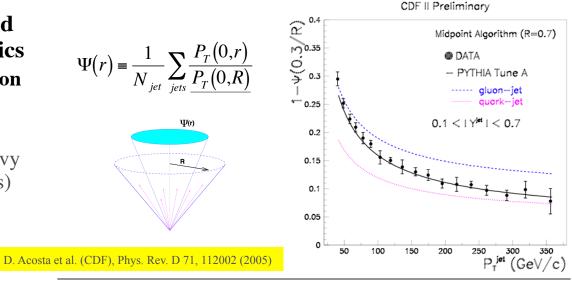



Fundamentals of Jet Physics

 Basic production mechanism in pQCD starts with

$$\sigma = \sum_{\substack{\text{partons } i \\ \text{colour } j}} C_{ij} \int_{0}^{1} d\tau \int_{\tau}^{1} \frac{dx_{1}}{\tau} \Big[f_{1}(x_{1}) f_{2}(\tau / x_{1}) \Big] \hat{\sigma}(\tau s)$$

 Leading-order (LO) diagrams already complex

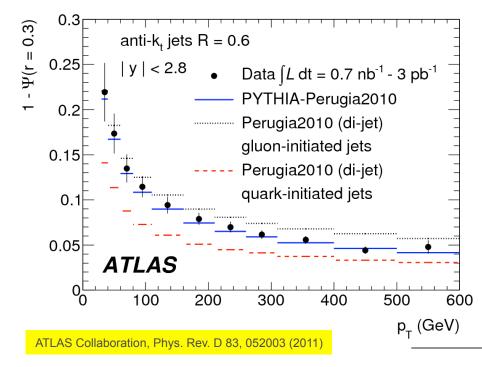

Process	$ar{\Sigma} \mathcal{M} ^2/g^4$	Numerical value for 90°
$qq' \rightarrow qq'$	$\frac{4}{9}\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$	2.22
$q\bar{q'} ightarrow q\bar{q'}$	$\frac{4}{9}\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$	2.22
$qq \rightarrow qq$	$\frac{4}{9} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2} \right) - \frac{8}{27} \frac{\hat{s}^2}{\hat{u}\hat{t}}$	3.26
$q\bar{q} \rightarrow q'\bar{q'}$	$\frac{4}{9}\frac{\hat{t}^2+\hat{u}^2}{\hat{s}^2}$	2.22
$q\bar{q} ightarrow q\bar{q}$	$\frac{4}{9} \big(\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} \big) - \frac{8}{27} \frac{\hat{u}^2}{\hat{s}\hat{t}}$	2.59
$q\bar{q} ightarrow gg$	$\frac{32}{27}\frac{\hat{t}^2 + \hat{u}^2}{\hat{t}\hat{u}} - \frac{8}{3}\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$	1.04
$gg \rightarrow q\bar{q}$	$\frac{1}{6} \frac{\hat{t}^2 + \hat{u}^2}{\hat{t}\hat{u}} - \frac{3}{8} \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$	0.15
$gq \rightarrow gq$	$\frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{s}\hat{u}} + \frac{\hat{u}^2 + \hat{s}^2}{\hat{t}^2}$	6.11
$gg \rightarrow gg$	$rac{9}{2}(3-rac{\hat{t}\hat{u}}{\hat{s}^2}-rac{\hat{s}\hat{u}}{\hat{t}^2}-rac{\hat{s}\hat{t}}{\hat{u}^2})$	30.4

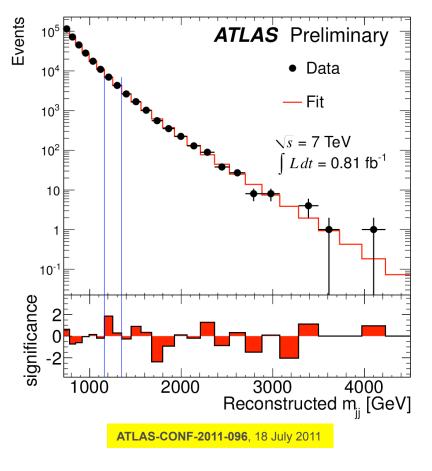
What Have We Learned?

- Definition of jets critical
 - Much evolution in algorithms
 - Driven in large measure by theoretical considerations
- Calibration of jets requires datadriven techniques
 - Developed several techniques to calibrate *in situ*
 - Still "work in progress"
- Approach to jet-finding and calibration driven by physics
 - Best example is comparison between
 - > QCD tests
 - Reconstruction of heavy objects (top and Higgs)

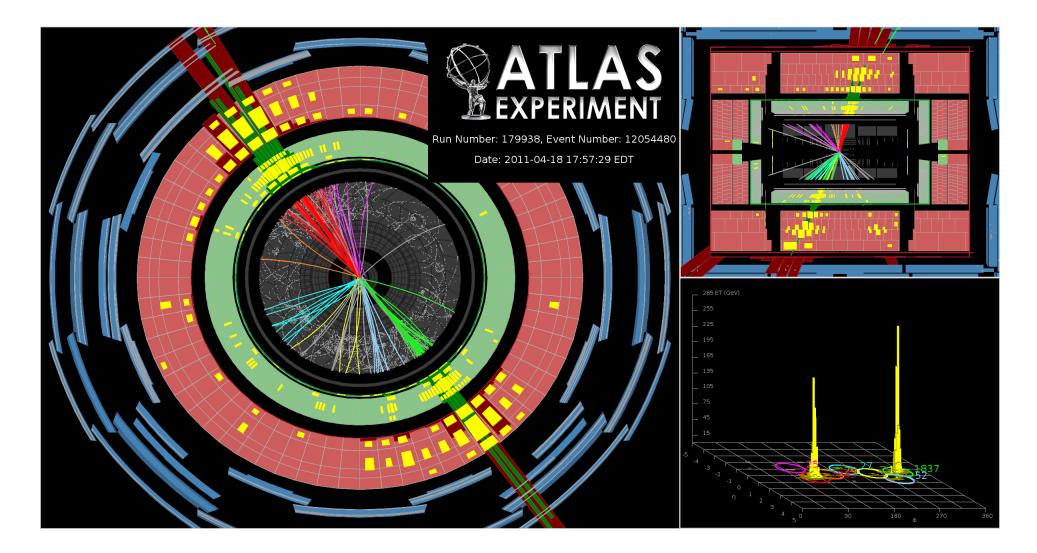
Need data to understand jets as backgrounds

- Examples include
 - > Lepton ID
 - > MET measurement
 - > Heavy quark tagging
- Use to "calibrate" MC/simulation
- Bottom line: SM Picture of QCD works well




PHY2407S 4

LHC Lessons


LHC studies have reproduced many of these observations

- However, much higher jet momenta
 - > Jets with $p_T > 2 \text{ TeV}$
- Focus has been on searches
 - > Looking for resonances in dijet mass
 - > Sensitive to excited quarks

Highest Dijet Mass Event

Jet Anatomy

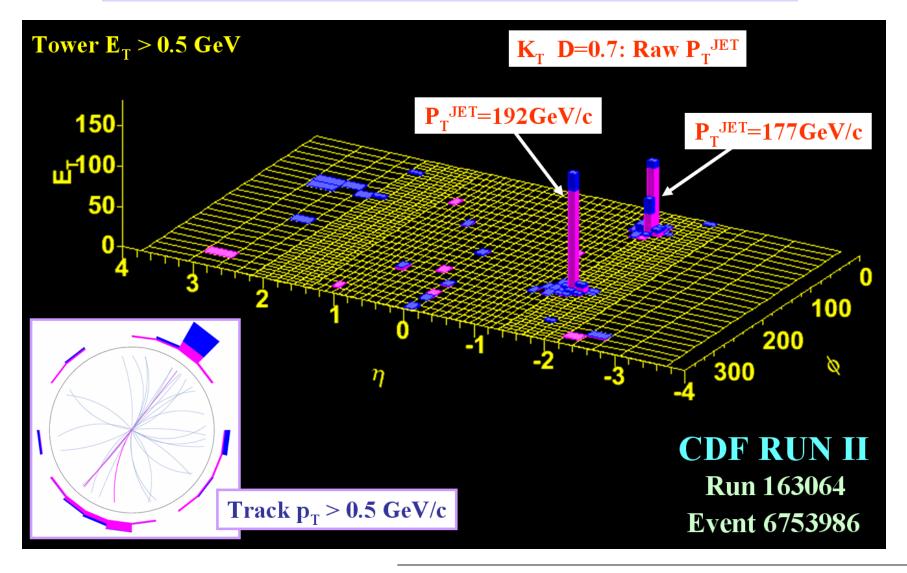
A jet arises from 2 different physical phenomena

- Happen at different energy scales
 - > Fragmentation of initial parton
 - QCD radiation of a coloured object
 - Creates a "cluster" of coloured partons
 - In principle, not independent of rest of event
 - Energy scale >> 1 GeV
 - > Hadronization of "cluster"
 - Formation of colourless objects -mesons & baryons
 - Responsible for the real observables
 - Energy scale ~ 1 GeV

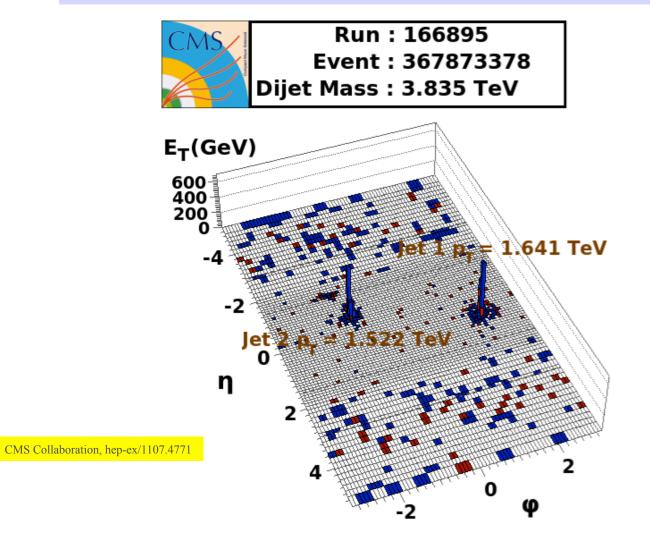
Have to worry about

- What defines a jet (algorithm)?
- What its properties are (recombination scheme)?

- First, tackle easiest part: What is a jet's observable properties?
 - Assume you have a collection of final state mass-less "particles" detected in calorimeter towers i


$$M^{J} = \sqrt{\left(E^{J}\right)^{2} - \left(p^{J}\right)^{2}}$$

$$y^{J} = \frac{1}{2} \ln \frac{1}{E^{J} - p_{z}^{J}}$$
$$\varphi^{J} = \tan^{-1} \frac{p_{y}^{J}}{p_{x}^{J}}$$


- Advantages:

- Clear Lorentz behaviour
- Avoids use of E_T which has ill-defined definition
- Can generalize to "cells", towers, charged particles, etc.

A Real Jet Event

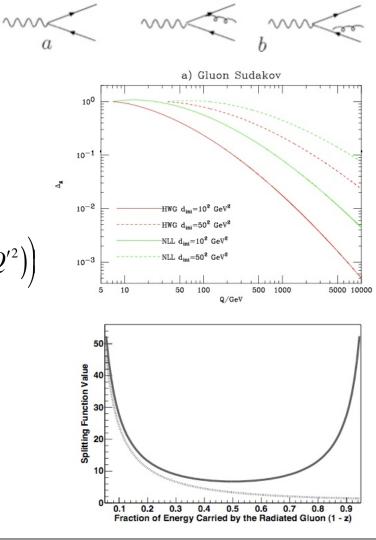
An LHC CMS Jet Event

Highest dijet Mass event Observed by CMS at 7 TeV

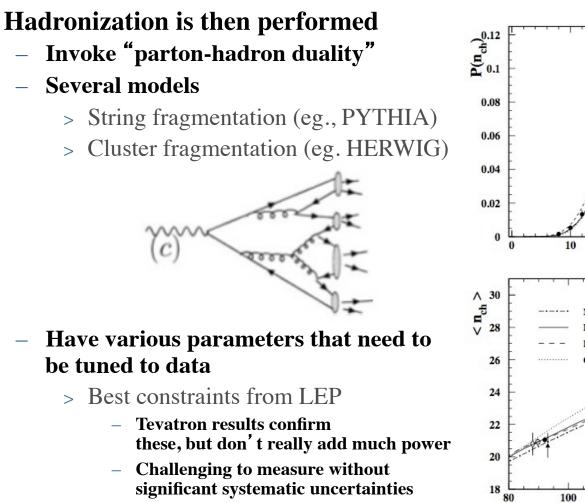
PHY2407S 9

Parton Shower Evolution

Start with a parton (q/g) with virtuality μ^2

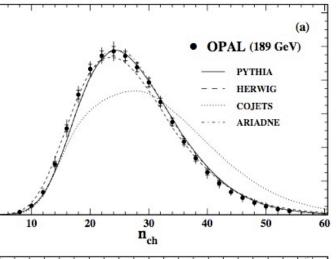

 Probability of emission with daughter carrying z fraction of parent momentum

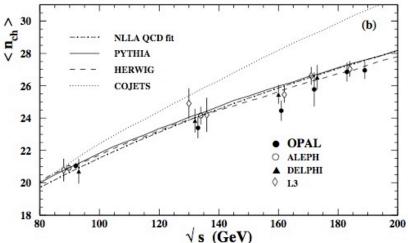
$$d^{2}P_{a}(z,\mu^{2}) = \frac{d\mu^{2}}{\mu^{2}} \frac{\alpha_{s}}{2\pi} P_{a \rightarrow bc}(z) dz$$


- Order these using Sudakov factor, relating $\mu^2 \sim Q^2$

$$P_a^{no}(Q_{\max}^2, Q^2) = \exp\left(-\int_{Q^2}^{Q_{\max}^2} dQ' \int_{z_{\min}}^{z_{\max}} dz' P_a(z', Q'^2)\right)$$

- Deal with infrared & collinear divergences
 - > Define minimum $\mu \mu_0$
- Ensure colour coherence of multiple emissions
 - Typically do this by angular ordering, selective vetoing, etc.
 - > Must be respected when hadronization is performed




Hadronization of Showers

> Remains a source of systematic uncertainty

OPAL, Eur. Phys. J C16, 185 (2000)

Jet Algorithms

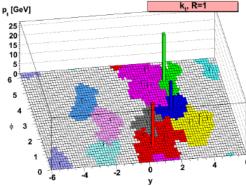
- Jet clustering algorithms have evolved over the last 30 years
 - Goals of any algorithm can be divided into
 - > Theoretically motivated:
 - Fully specified
 - Detector independent
 - Theoretically well-behaved
 - Order independent
 - > Experimentally motivated:
 - Fully specified
 - Detector independent
 - Optimal resolution and efficiency
 - Ease of calibration
 - Computationally efficient
- Various efforts to develop consistent frameworks
 - Snowmass Accord (1990)
 - Les Houches Accord (1999)

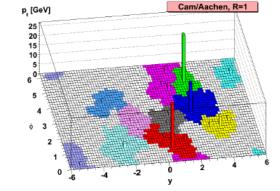
Raz Alon (see talk below) has done a nice job of summarizing current Jet Algorithm codes

– Key observations:

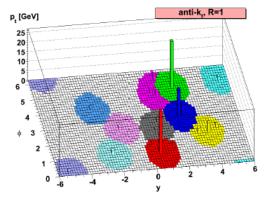
- > In principle, prefer some algorithms over others
 - Seedless cone-based algorithms
 - K_T algorithms
- Computational efficiency is a concern in some cases
 - But largely an issue of optimization
- Selection of "best" algorithm requires evaluation of ultimate systematic uncertainties
 - Need data, as certain choices will depend on performance of calorimeter
 - Example is noise and pileup
- Good news is that we are not limited by lack of ideas

R. Alon, http://indico.cern.ch/conferenceDisplay.py?confld=52628

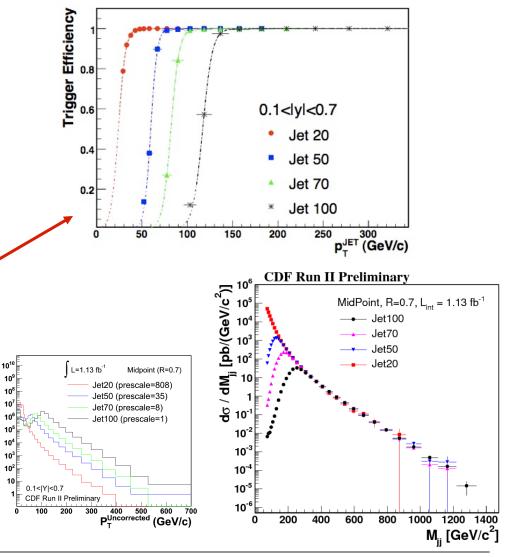

Clustering Effects


Illustrate by one example (from ATLAS studies)

- Compare results of several different algorithms
 - > K_T with R=1
 - > Angular-ordering (Cam/Aachen)
 - > SISCone
 - > Anti-K_T


- Things to be concerned about

- > Cluster sizes determined by data will present challenges to calibrate P, 100-91
- > Cluster merging/splitting will continue to be a challenge
- > Optimization of resolution/ systematic uncertainties will require effort
- Things not to worry about
 - > Angular resolution (though need to check for any biases)!



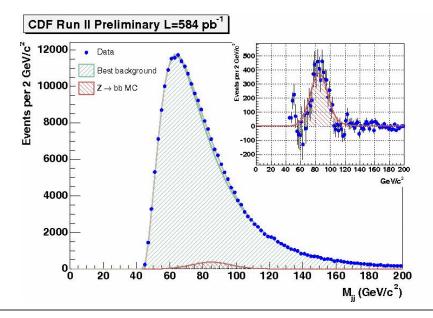
Jet Finding Efficiencies

- **Efficiency of finding jets limited** primarily by two effects:
 - **Detector energy response &** resolution
 - Physical size of jets
 - > For cone algorithms, these two compete with each other
- **Further complicated by the fact** that jets are produced with sharply falling spectrum

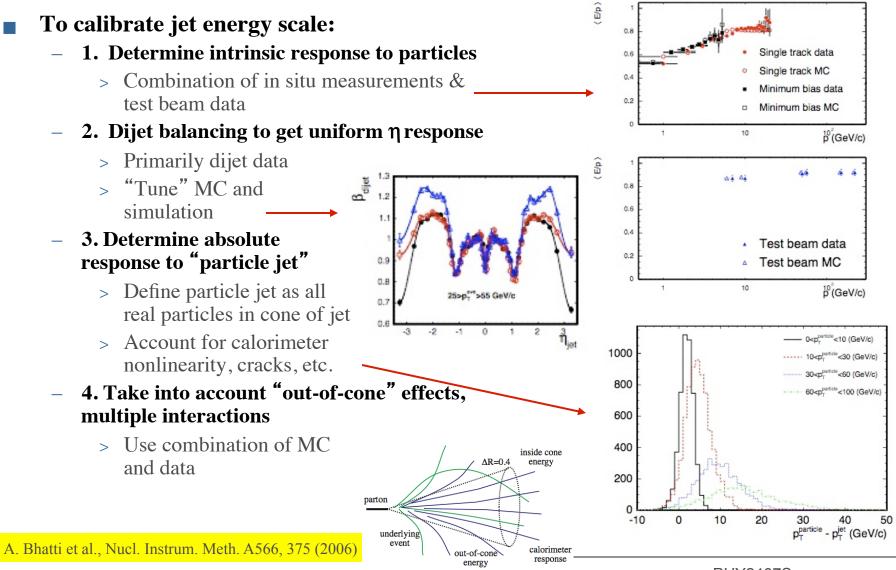
 - ly ian. Aeans that efficience. issue already at the trigger leven Manage these at Tevatron & LHC wer-energy jet

 - > Lower energy jets used primarily for
 - **Background studies**
 - Calibration

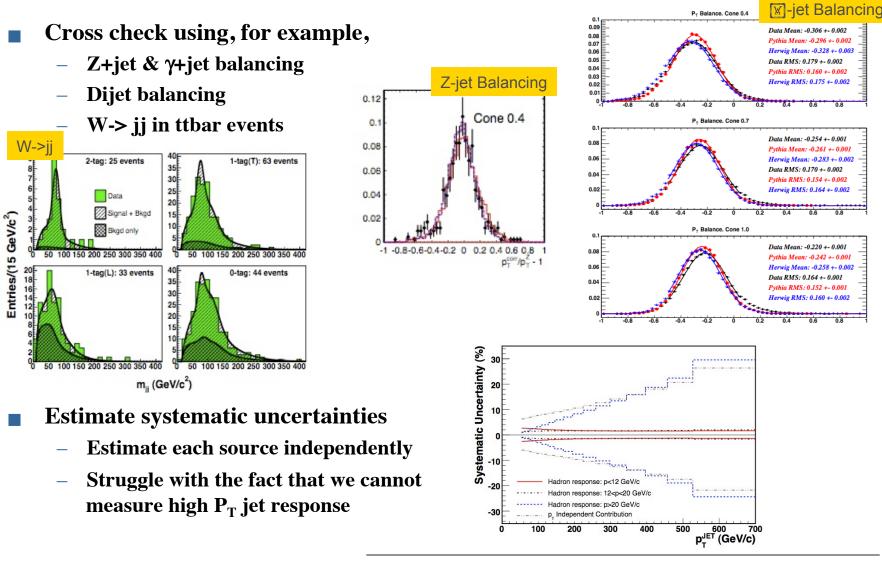
PHY2407S 14


Jet Energy Resolutions

- MC & simulation give estimates of energy resolution
 - Resolution is determined primarily by convolution of
 - > Intrinsic calorimeter response
 - > Jet fragmentation & hadronization effects
 - > Jet algorithm + pileup +
 - In reality, need to measure the resolution in data
- Four *in situ* measurements of resolution developed at Tevatron
 - γ+jet balancing
 - W to qq in top quark decays
 - Dijet balancing (more of a constraint than anything else)
 - Z to bb decays
 - Require two jets, each with secondary vertex b-tag
 - Possible due to L2 vertex trigger

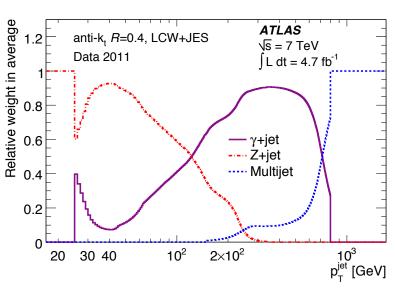

 CDF: Taking the FWHM ~ 25 GeV/c², obtain

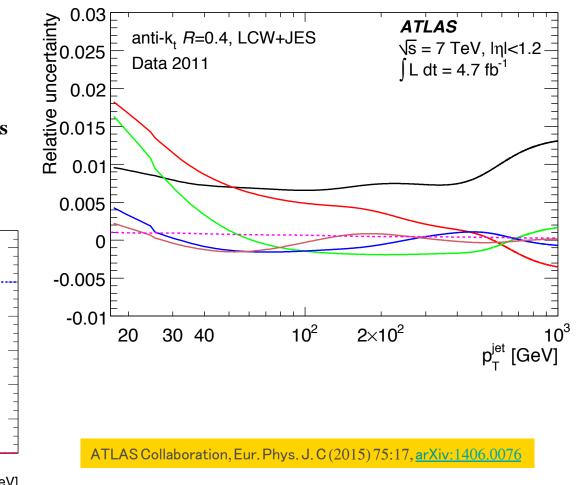
$$\sigma_z \sim 12\% M_z$$
$$\Rightarrow \frac{\sigma}{P_T^J} \sim 17\%$$


 Or about 50% more than intrinsic energy resolution of calorimeter

Jet Energy Calibration

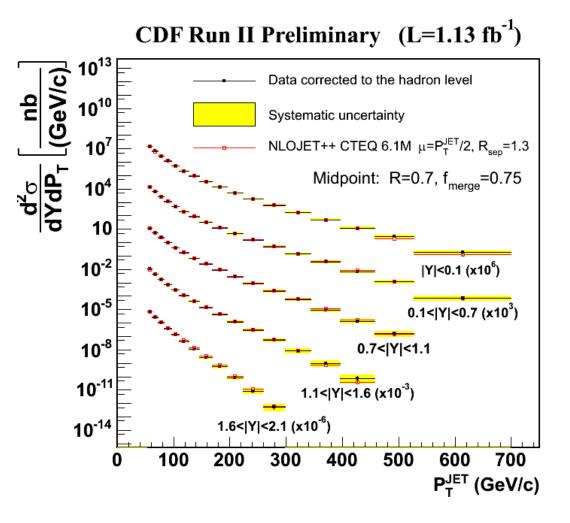
Final Steps in Energy Calibration


PHY2407S 17


0.6

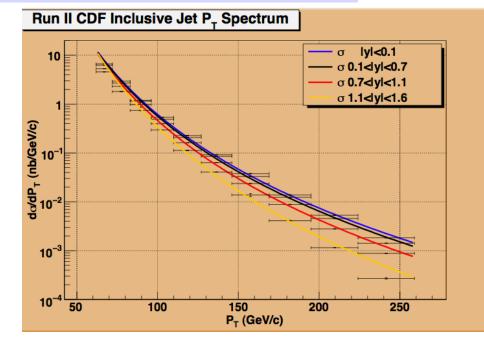
ATLAS Jet Calibration

- Used similar techniques
 - Z+jet & γ+jet balancing
 - Dijet balancing
 - Also extended and tested other techniques
 - Have 2 calibration schemes
 - > EM+JES


> LCW+JES

Production Cross Sections

- CDF analysis of ~1.13 fb⁻¹ of jet data
 - Used mid-point algorithm with R=0.7, f_{merge}=0.75
 - Data is scaled in plot to avoid overlapping
- Provide a strong test of QCD
 - Theoretically "clean" to model
 - Compare with NLO calculations
 - > Fill in details!
 - Generally a trend of small excess of events at higher P_T
 - Not statistically significant given systematic uncertainties


Total Jet Production Rates

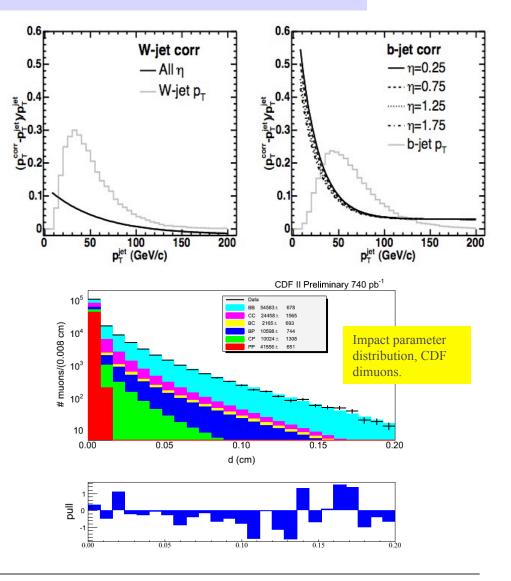
An "Exercise to Reader" – what is total cross section?

- To answer this question
 - Fit the spectrum in each y bin to power law using ROOT
 - > Use fit to extrapolate over various P_T ranges
 - Was lazy, only did the first four bins
 - > Generally, differential cross section falls with $(P_T)^{-6}$
 - And gets a little steeper as P_T increases
 - Means that higher P_T jets tend to be more central

Note large cross section at low P_T

- This is the source of backgrounds to other objects
- Also note that these are quite uncertain given the extrapolation!
 - > Eg., just changing range of fit
 - $\Delta \sigma(P_T > 10) \sim 30\%$

Cross Section (in nb)

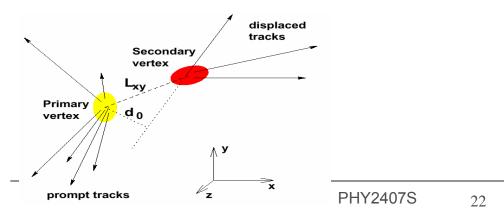

	PT > 62 GeV	PT > 30 GeV	PT > 10 GeV	
y < 0.1	122	5,600	1,800,000	
0.1 < y < 0.7	111	5,600	2,000,000	
0.7 < y < 1.1	96	6,100	3,000,000	
1.1 < y < 1.6	93	8,900	8,900,000	
	422	26,200	15,700,000	
Note: Another \sim 5-10% in rapidity interval 1.6 < $ y $ < 2.1				

Heavy Quark Jets

- Heavy quarks (b/c) also manifest themselves as jets
 - Different fragmentation process
 - Different hadronization
 - Result in kinematics that differ from light quark & gluon jets
 - "rich" in v 's and charged leptons
 - > Used for identification
 - But also affect efficiency and & energy resolution
 - Relatively long lifetimes allow for tagging using secondary vertices
 - > Become "standard" technique

 Bottom quarks have been particularly important

- Essential for top quark studies
- Result in unique capabilities at hadron colliders
 - > Good example is B_s studies



Heavy Flavour Tagging

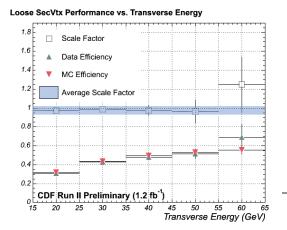
Heavy flavour tagging has been essential tool at Tevatron

- Top quark search
- Search for Higgs
- Studies of bottom/charm production
- Two methods developed
 - Semileptonic tagging
 - > 20% of b's decay inclusively to μ or e
 - Another 20% have leptons from charm decay
 - Challenge is purity of tagging scheme
 - CDF couldn't get fake rates below about 3-4%
 - Secondary vertex tagging most powerful

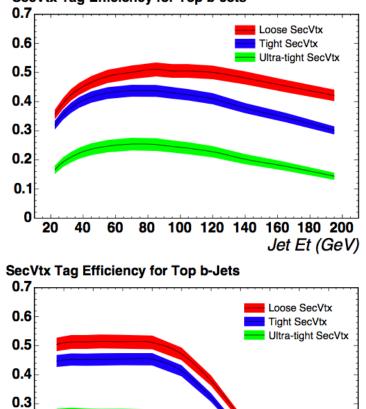
- Basic strategy is to use wellmeasured tracks
 - Select those with large impact parameter
 - Typically reconstruct average primary beam position in (x,y)
 - Require 2+ tracks with impact parameter > 2s and high quality
 - > Attempt to create a secondary vertex
 - > If successful, see if secondary vertex is sufficiently far from primary
 - Tag when secondary vtx found
 - Also "fake tag" when tag found, but in wrong direction

Tagging Efficiencies

0.2


0.1

0


0

0.2 0.4 0.6 0.8

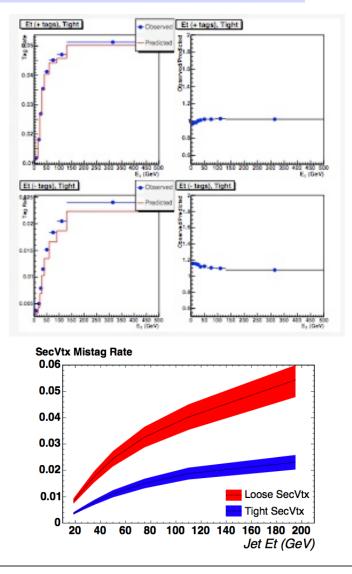
- Tagging efficiency difficult to model via simulation
 - Requires excellent knowledge of tracking resolution & efficiency
 - Strategy:
 - Measure efficiency and "mistag" rates in data
 - Inclusive electrons and muons
 Estimate b quark fraction
 - Tag fully reconstructed Bs
 - Compare with simulation & compute a scale factor
 - SF = $\varepsilon_{\text{Data}}/\varepsilon_{\text{MC}} \sim 0.95 \pm 0.05$ for "tight" SECVTX

SecVtx Tag Efficiency for Top b-Jets

1

2 2.2

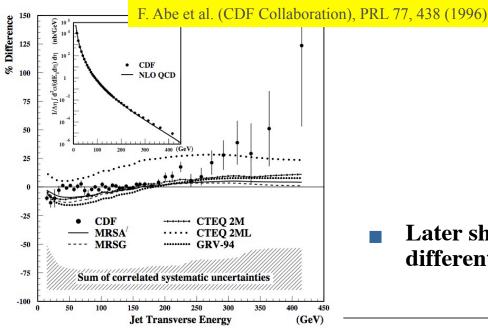
Jet Eta


1.2 1.4 1.6 1.8

Tagging Fake Rates

- B tagging fake rates measured from data
 - Take samples of dijet data, and then create a "fake matrix"
 - > Function of 6 variables
 - > Measure both +ve and -ve tag rates for "taggable jets"
 - Use -ve tag rates as mistag rate
 - Apply mistag rate to the jets in data sample before tagging

Variable	Bin Edges
Jet E_T (GeV)	0, 15, 22, 30, 40, 60, 90, 130, 1000
Num Tracks/jet	0, 1, 2, 3, 4, 5, 6, 7, 8 10, 13, 100
$\eta_{ m jet}$	0.0, 0.4, 0.8, 1.1, 2.4
nPrimaryVertex	1 - 6
$\sum E_t$ (GeV)	0, 80, 140, 220, 1000
$z_{\rm prim}~({\rm cm})$	-25, -10, 10, 25


Table 1: Variables and binning used in the mistag matrices.

Example: Quark Substructure

- Search for quark substructure a long-standing tradition at high energies
 - Eichten, Lane & Peskin
 - > PRL 50, 811 (1983)
 - Introduced "contact term" Λ_{C}
 - CDF obliged in 1996

> $\Lambda_{\rm C} \sim 1.6 \ TeV$

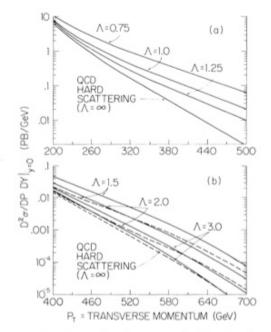


FIG. 3. The jet production cross section (in picobarns/gigaelectronvolt) at rapidity y = 0 vs transverse momentum at $\sqrt{s} = 2$ TeV in (a) $\overline{p}p$ collisions and (b) ppcollisions for various Λ (in teraelectronvolts). The solid and dashed lines in (b) refer, respectively, to the plus and minus signs in Eq. (5). As a result of a cancellation near y = 0, the interference is negligible in (a).

Later shown to be described by different PDF behaviour at large x

More Sensitive Study

MC χ ratios vs (mass)⁴, varying Λ , CDF Preliminary

1 TeV

1.4 TeV

0.5

0.6

(mass)⁴ TeV⁴

0.7

∗ 2 TeV

0.4

5

3.5

2.5

2

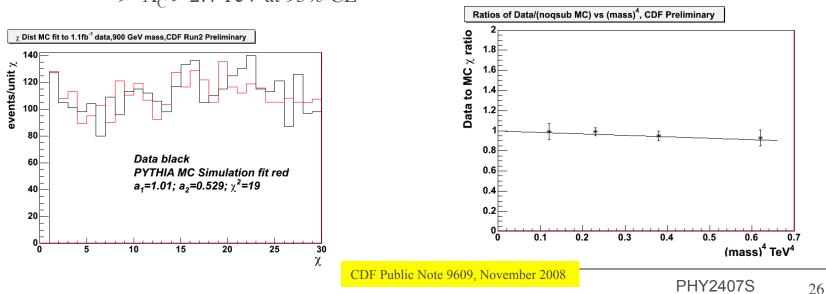
1.5

0.5

0

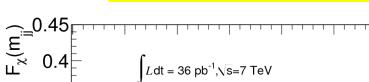
0.1

0.2

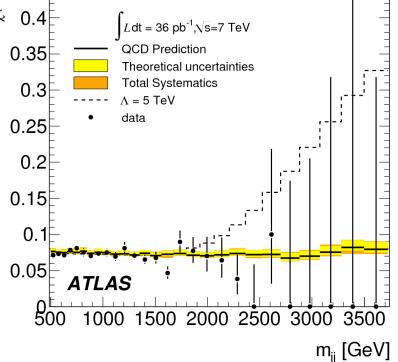

0.3

MC χ ratio 4.5

Employ angular distribution in dijet scattering


$$\chi \equiv \exp[\eta_1 - \eta_2]$$

- Look at this as a function of ____ dijet invariant mass
 - > 100 GeV mass bins
- More sensitive to $\Lambda_{\rm C}$ _
 - > Less sensitive to PDFs
 - > $\Lambda_{\rm C}$ > 2.4 TeV at 95% CL



And Even More Sensitive!

- ATLAS has further improved sensitivity
 - Look at fraction of centrally produced jets relative to larger angular range
 - See behaviour as dijet mass increases
 - Expect QCD background to have flat ratio
 - More sensitive to Λ_{C}
 - $\Lambda_{\rm C}$ > 9.5 TeV at 95% CL

ATLAS Collaboration, New J. Phys. 13,053004 (2011)

$$F_{\chi}([m_{jj}^{\max} + m_{jj}^{\max}]/2) = \frac{N_{events}(|y^*| < 0.6, m_{jj}^{\min}, m_{jj}^{\max})}{N_{events}(|y^*| < 1.7, m_{jj}^{\min}, m_{jj}^{\max})}$$
$$y^* = \frac{1}{2}(y_1 - y_2)$$