
Hard Scattering in Hadron-Hadron 
Collisions:  Physics and Anatomy

Section 8: Data Analysis Challenges
1.  Some Tools to Extract Knowledge

2.  Systematic Uncertainties

3.  Significance (or not)

4.  Perils of Running Blind
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1. Introduction:  Some Tools

!  Our understanding of high 
energy hadron collisions has 
limits

–  It’s why we are studying them in 
the first place

–  But some of the limitations in 
knowledge “get in the way”

–  Progress is made by being able to 
control or minimize the 
uncertainties that issues not 
relevant to your analysis

!  Generally, particle physicists 
have become pretty good at 
doing basic statistics

–  But we do get into trouble
–  Discuss a number of tools (and 

pitfalls) in common use

PHY2407S 

!  Treatment of systematic 
uncertainties

–  Essential, but often riddled with 
assumptions and approximations

!  Significance – how do we make 
statements about belief from 
data?

–  But we do get into trouble

!  Blind Analyses
–  All about avoiding 

unconscious or conscious bias
–  But there are challenges

!  Resources Available
–  No re-invention of wheels 

please
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Literature Summary

!  Some classic statistics resources

–  F. Solmitz, “Analysis of Experiments in Particle Physics”, Annu. 
Rev. Nucl. Sci. 1964:14, 375-402.

–  J. Orear, “Notes on Statistics for Physicists”, CLNS 82/511 (1982), 
http://pages.physics.cornell.edu/p510/w/images/p510b/6/62/
Notes_on_Statistics_for_Physicists.pdf

!  Systematic Uncertainty References

–  P. Sinervo, “Definition and Treatment of Systematic Uncertainties”, 
http://www.slac.stanford.edu/econf/C030908/papers/TUAT004.pdf
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2.  Systematic Uncertainties

!  Systematic uncertainties play key role in physics 
measurements
–  Few formal definitions exist, much “oral tradition”

–  “Know” they are different from statistical uncertainties

Random Uncertainties
q  Arise from stochastic 

fluctuations
q  Uncorrelated with previous 

measurements
q  Well-developed theory
q  Examples

q   measurement resolution
q   finite statistics
q   random variations in system 

Systematic Uncertainties
q  Due to uncertainties in the 

apparatus or model
q  Usually correlated with 

previous measurements
q  Limited theoretical framework
q  Examples

q  calibrations uncertainties
q  detector acceptance
q  poorly-known theoretical 

parameters 
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Literature Summary

!  Increasing literature on the topic of “systematics”
 A representative list:
–  R.D.Cousins & V.L. Highland, NIM A320, 331 (1992).
–  C. Guinti, Phys. Rev. D 59 (1999), 113009.
–  G. Feldman, “Multiple measurements and parameters in the unified approach,”  

presented at the FNAL workshop on Confidence Limits (Mar 2000).
–  R. J. Barlow, “Systematic Errors, Fact and Fiction,” hep-ex/0207026 (Jun 2002), and 

several other presentations in the Durham conference. 
–  G. Zech,  “Frequentist and Bayesian Confidence Limits,” Eur. Phys. J, C4:12 (2002).
–  R. J. Barlow, “Asymmetric Systematic Errors,” hep-ph/0306138 (June 2003).
–  A. G. Kim et al., “Effects of Systematic Uncertainties on the Determination of 

Cosmological Parameters,” astro-ph/0304509 (April 2003).
–  J. Conrad et al., “Including Systematic Uncertainties in Confidence Interval 

Construction for Poisson Statistics,” Phys. Rev. D 67 (2003), 012002
–  G.C.Hill, “Comment on “Including Systematic Uncertainties in Confidence Interval 

Construction for Poisson Statistics”,” Phys. Rev. D 67 (2003), 118101.
–  G. Punzi, “Including Systematic Uncertainties in Confidence Limits”, CDF Note in 

preparation.
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 Case Study #1: W Boson Cross Section

!  Rate of W boson production
–  Count candidates Ns+Nb

–  Estimate background ���
Nb & signal efficiency e

–  Measurement reported as

–  Uncertainties are
� 

σ = Nc − Nb( ) (ε L)

� 

σ = 2.64 ± 0.01 (stat)
                     ± 0.18 (syst) nb

� 

σ stat ≅σ 0
stat 1/Nc

σ syst ≅σ 0
syst δNb /Nb( )2 + δε /ε( )2 + δL /L( )2
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Definitions are Relative

!  Efficiency uncertainty estimated using Z 
boson decays
–  Count up number of Z candidates NZ

cand

>  Can identify using charged tracks
>  Count up number reconstructed NZ

recon

–  Redefine uncertainties

–   � 

ε = NZ
recon

NZ
cand ⇒δε ≅

NZ
recon NZ

cand − NZ
recon( )

NZ
cand

� 

σ stat ≅σ 0 1/Nc + δε /ε( )2

σ syst ≅σ 0 δNb /Nb( )2 + δL /L( )2

Lessons: 
•  Some systematic uncertainties 

are really “random” 
•  Good to know this 

• Uncorrelated 
• Know how they scale 

•  May wish to redefine 
•  Call these  

        “CLASS 1” Systematics 
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Top Mass Good Example

!  Top mass uncertainty in template analysis
–  Statistical uncertainty from shape of 

reconstructed mass distribution and 
statistics of sample

–  Systematic uncertainty coming from jet 
energy scale (JES)

>  Determined by calibration studies, 
dominated by modelling uncertainties

>  5% systematic uncertainty

!  Latest techniques determine JES 
uncertainty from dijet mass peak (W->jj)
–  Turn JES uncertainty into a largely 

statistical one
–  Introduce other smaller systematics 

� 

Mtop = 171.8 ± 1.9(stat + JES) ± 1.0 (syst) GeV/c2

= 171.9 ± 2.1 GeV/c2
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Case Study #2: Background Uncertainty

!  Look at same W cross section analysis
–  Estimate of Nb dominated by QCD backgrounds

>  Candidate event
–  Have non-isolated leptons
–  Less missing energy

>  Assume that isolation ���
and MET uncorrelated

>  Have to estimate the ���
uncertainty on Nb

QCD

–  No direct measurement ���
has been made to verify the model

–  Estimates using Monte Carlo modelling have large 
uncertainties
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Estimation of Uncertainty

!  Fundamentally different class of uncertainty
–  Assumed a model for data interpretation
–  Uncertainty in Nb

QCD depends on accuracy of model
–  Use “informed judgment” to place bounds on one’s 

ignorance
>  Vary the model assumption to estimate robustness
>  Compare with other methods of estimation

!  Difficult to quantify in consistent manner
–  Largest possible variation?

>  Asymmetric?
–  Estimate a “1 σ” interval?
–  Take 

Lessons: 
•  Some systematic uncertainties 

reflect ignorance of one’s data 
•  Cannot be constrained by  

observations 
•  Call these  

        “CLASS 2” Systematics 

� 

σ ≈ Δ
12
?
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Case Study #3:  Boomerang CMB Analysis

!  Boomerang is one of several���
CMB probes
–  Mapped CMB anisoptropy
–  Data constrain models of the���

early universe

!  Analysis chain:
–  Produce a power spectrum for���

the CMB spatial anisotropy
>  Remove instrumental effects through a complex 

signal processing algorithm
–  Interpret data in context of many models with 

unknown parameters
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Incorporation of Model Uncertainties

!  Power spectrum extraction ���
includes all instrumental���
effects
–  Effective size of beam
–  Variations in data-taking���

procedures

!  Use these data to extract ���
7 cosmological parameters
–  Take Bayesian approach

>  Family of theoretical models defined by 7 parameters
>  Define a 6-D grid (6.4M points), and calculate likelihood 

function for each
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Marginalize Posterior Probabilities

!  Perform a Bayesian ���
“averaging” over a grid ���
of parameter values
–  Marginalize w.r.t. the ���

other parameters
>  NB: instrumental���

uncertainies included���
in approximate manner

–  Chose various priors ���
in the parameters

!  Comments:
–  Purely Bayesian analysis with ���

no frequentist analogue
–  Provides path for inclusion of ���

additional data (eg. WMAP)

Lessons: 
•  Some systematic uncertainties 

reflect paradigm uncertainties 
•  No relevant concept of a  

frequentist ensemble 
•  Call these  

        “CLASS 3” Systematics 
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Latest Planck Results

!  The prior uncertainties ���
dominate

Planck Collaboration, 
1303.5076v3 (2014) 
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Proposed Taxonomy for Systematic 
Uncertainties

!  Three “classes” of systematic uncertainties
–  Uncertainties that can be constrained by ancillary 

measurements
–  Uncertainties arising from model assumptions or 

problems with the data that are poorly understood
–  Uncertainties in the underlying models

!  Estimation of Class 1 uncertainties straightforward
–  Class 2 and 3 uncertainties present unique challenges
–  In many cases, have nothing to do with statistical 

uncertainties
>  Driven by our desire to make inferences from the data 

using specific models
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Estimation Techniques

!  No formal guidance on how to define a systematic 
uncertainty
–  Can identify a possible source of uncertainty
–  Many different approaches to estimate their magnitude

>  Determine maximum effect D

!  General rule:
–  Maintain consistency with definition of���

statistical intervals
–  Field is pretty glued to 68% confidence intervals
–  Recommend attempting to reflect that in magnitudes of 

systematic uncertainties
–  Avoid tendency to be “conservative”

� 

σ = Δ
2
?

σ = Δ
12
?
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Estimate of Background Uncertainty in Case 
Study #2

!  Look at correlation of Isolation and MET
–  Background estimate ���

increases as isolation ���
“cut” is raised

–  Difficult to measure or���
accurately model

>  Background comes ���
primarily from very���
rare jet events with ���
unusual properties

>  Very model-dependent

!  Assume a systematic uncertainty representing 
the observed variation
–  Authors argue this is a “conservative” choice
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Cross-Checks Vs Systematics

!  R. Barlow makes the point in Durham(PhysStat02)
–  A cross-check for robustness is not an invitation to 

introduce a systematic uncertainty
>  Most cross-checks confirm that interval or limit is robust,

–   They are usually not designed to measure a systematic 
uncertainty

!  More generally, a systematic uncertainty should
–  Be based on a hypothesis or model with clearly stated 

assumptions
–  Be estimated using a well-defined methodology
–  Be introduced a posteriori only when all else has failed
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 Statistics of Systematic Uncertainties

!  Goal has been to incorporate systematic uncertainties 
into measurements in coherent manner
–  Increasing awareness of need for consistent practice

>  Frequentists:  interval estimation increasingly sophisticated
–  Neyman construction, ordering strategies, coverage properties

>  Bayesians: understanding of priors and use of posteriors
–  Objective vs subjective approaches, marginalization/conditioning

–  Systematic uncertainties threaten to dominate as precision 
and sensitivity of experiments increase

!  There are a number of approaches widely used
–  Summarize and give a few examples
–  Place it in context of traditional statistical concepts
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Formal Statement of the Problem

!  Have a set of observations xi, i=1,n
–  Associated probability distribution function (pdf) and 

likelihood function

>  Depends on unknown random parameter q
>  Have some additional uncertainty in pdf

–  Introduce a second unknown parameter l

!  In some cases, one can identify statistic yj that 
provides information about l

–  Can treat l as a “nuisance parameter”

  

� 

p xi |θ( ) ⇒ L θ( ) = p xi |θ( )
i∏

  

� 

L θ,λ( ) = p xi |θ,λ( )
i∏

  

� 

L θ,λ( ) = p xi,y j |θ,λ( )i, j∏
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Bayesian Approach

!  Identify a prior p(l) for the “nuisance parameter” l
–  Typically, parametrize as either a Gaussian pdf or a flat 

distribution within a range (“tophat”)
–  Can then define Bayesian posterior

–  Can marginalize over possible values of l
>  Use marginalized posterior to set Bayesian credibility 

intervals, estimate parameters, etc.

!  Theoretically straightforward ….
–  Issues come down to choice of priors for both q, l

>  No widely-adopted single choice
>  Results have to be reported and compared carefully to 

ensure consistent treatment

  

� 

L θ,λ( ) π λ( ) dθ dλ
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Frequentist Approach

!  Start with a pdf for data
–  In principle, this would describe frequency 

distributions of data in multi-dimensional space
–  Challenge is take account of nuisance parameter
–  Consider a toy model 

>  Parameter s is Gaussian���
width for n

!  Likelihood function (x=10, y=5)
–  Shows the correlation
–  Effect of unknown n

� 

p xi,y j |θ,λ( )

� 

p x,y |µ,ν( ) =G x − µ + ν( ),1( )G y −ν,s( )
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Formal Methods to Eliminate Nuisance 
Parameters

!  Number of formal methods exist to eliminate 
nuisance parameters
–  Of limited applicability given the restrictions
–  Our “toy example” is one such case

>  Replace x with t=x-y and parameter n with

>  Factorized pdf and can now integrate over n’
>  Note that pdf for m has larger width, as expected

–  In practice, one often loses information using this 
technique

� 

v'≡ν + µs2
1+ s2

⇒ p t,y |µ,ν '( ) =G t − µ, 1+ s2( )G y −ν '+ ts2
1+ s2 ,

s
1+ s2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
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Alternative Techniques for Treating Nuisance 
Parameters

!  Project Neyman volumes onto parameter of 
interest
–  “Conservative interval”
–  Typically over-covers,���

possibly badly

!  Choose best estimate of���
nuisance parameter
–  Known as “profile method”

–  Coverage properties ���
 require definition of ensemble

–  Can possible under-cover when parameters strongly 
correlated

>  Feldman-Cousins intervals tend to over-cover slightly 
(private communication)

From G. Zech 
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Example:  Solar Neutrino Global Analysis

!  Many experiments have measured solar neutrino flux
–  Gallex, SuperKamiokande, SNO, Homestake, SAGE, etc.
–  Standard Solar Model (SSM) describes n spectrum
–  Numerous “global analyses” that synthesize these

!  Fogli et al. have detailed one such analysis
–  81 observables from these experiments
–  Characterize systematic uncertainties through 31 parameters

>  12 describing SSM spectrum
>  11 (SK) and 7 (SNO) systematic uncertainties 

!  Perform a χ2 analysis
–  Look at χ2 to set limits on parameters

Hep-ph/0206162, 18 Jun 2002 
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Formulation of χ2

!  In formulating χ2, linearize effects of the systematic 
uncertainties on data and theory comparison

>  Uncertainties un for each observable
–  Introduce “random” pull xk for each systematic

>  Coefficients ck
n to parameterize effect on nth observable

>  Minimize χ2 with respect to xk

>  Look at contours of equal Δχ2

� 

χ pull
2 ≡min ξ{ }

Rn
exp t − Rn

theor − (cn
kξk )∑

un

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ ⎟ 

n=1

N

∑

2

+ ξk
2

k=1

K

∑

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
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Solar Neutrino Results

!  Can look at “pulls” at χ2 ���
minimum
–  Have reasonable distribution
–  Demonstrates consistency of���

model with the various ���
measurements

–  Can also separate
>  Agreement with experiments
>  Agreement with systematic���

uncertainties
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Pull Distributions for Systematics

!  Pull distributions for xk ���
also informative
–  Unreasonably small variations
–  Estimates are globally too���

conservative?
–  Choice of central values ���

affected by data
>  Note this is NOT a ���

blind analysis

!  But it gives us some���
confidence that intervals ���
are realistic
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Typical Solar Neutrino Contours

!  Can look at probability ���
contours
–  Assume standard χ2 form
–  Probably very small ���

probability contours have���
relatively large ���
uncertainties
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Hybrid Techniques

!  A popular technique (Cousins-Highland) does an 
“averaging” of the pdf
–  Assume a pdf for nuisance parameter g(l) 
–  “Average” the pdf for data x

–  Argue this approximates an ensemble where
>  Each measurement uses an apparatus that differs in 

parameter l
–  The pdf g(l) describes the frequency distribution

>  Resulting distribution for x reflects variations in l

!  Intuitively appealing
–  But fundamentally a Bayesian approach
–  Coverage is not well-defined

� 

pCH x |θ( ) ≡ p x |θ,λ( )∫ g λ( ) dλ

See, for example, J. Conrad et al. 
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Computationally Challenging 

!  In many measurements
–  Can have several dozen sources of systematic 

uncertainty
–  Creating a tractable ensemble is not possible
–  Even the definition of the ensemble is controversial

!  Current state of the art is to perform a 
Bayesian-like “marginalization”
–  Treat the new probability function in the same way 

as before
–  But

>  Not clear how to evaluate coverage
>  Not strongly grounded in theory
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3.  What is Significance?

!  Typical HEP approach
–  Have a set of observations
–  We say the data are “statistically significant” when

>  We can use data to support a specific hypothesis, eg.
–  “We see a phenomenom not predicted by the Standard Model”
–  “We report the discovery of X”

>  The interpretation eliminates a number of competing 
hypotheses

>  The conclusion will not likely be altered with larger 
statistics or further analysis

!  Want a statistical framework that
–  Measures “degree of belief”
–  Ensures robust conclusions
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Some “Obvious” Discoveries

!  Observation of             Mixing
–  24.8 ± 7.6 ± 3.8 like-sign events vs ���

25.2 ± 5.0 ± 3.8 opposite sign
–  “3σ” discovery

!  W Boson
–  6 eν events, no background!

!  Upsilon
–  770 events on 350 background
–  Described as “significant” but no���

measure of it

!  B mesons
–  18 events on 4-7 background
–  No measure of significance

Albrecht et al., 
PLB 192, 245 (1987) 

Arnison et al., 
PLB 122, 103 (1983) 

Herb et al., 
PRL 39, 252 (1977) 

Behrends et al., 
PRL 50, 881 (1983) 

  

� 

B0B 0
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A Frequentist Definition

!  Significance defined in context of “hypothesis testing”
–  Have two hypotheses, H0 and H1, and ���

possible set of observations X
>  Choose a “critical region”, w, in the space of observations X
>  Define significance, α, as probability of X ∊ w when H0 is true
>  Define the power, 1-β, as probability of X ∊ w when H1 is true

!  In this language, an observation is “significant” when 
–  Significance α is small & β is small

>  Typically a < few 10-5

Typically, H0 is  
“null” hypothesis 
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Some Comments ���
on Formal Definition

!  Definition depends on
–  Choice of statistic X

>  Left up to the experimenter as part of design
>  More on that later

–  Choice of “critical region” w
>  Depends on hypotheses
>  Often chosen to minimize systematic uncertainties?
>  Not necessarily defined in advance!

–  Definition of “probability”

>  A frequentist definition
>  Raises issue of how systematic uncertainties are managed

–  Choice of α and β
>  Matter of “taste” and precedent
>  A small α is safe, but comes with less “discovery reach”

!  More fundamentally:
–  Is this an adequate definition of “significance?”
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The Choice of Statistic & Critical 
Region

!  Choice of statistic motivated by specific 
experimental design
–  Informed by the measurement to be made
–  Critical region is chosen at the same time
–  Good example:  E787/E949 search

              K+ →  π+ νν 
>  Look for π+→ µ+ ν decay
>  Define a “box” a priori

–  Expected 0.15±0.05 event bkgd Only two events 
Observed 
 
Significance 0.02% 
 
Have used the “box” 
Since 1988 
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Optimal Tests:���
Neyman-Pearson

!  In some cases, possible to identify the “most 
powerful” test
–  Must involve only “simple” hypotheses (no free 

parameters)
>  PDF’s given by fi(X)
>  Must have two hypotheses

–  For given α, can identify region to minimize β for 
alternative H1

>  Order observations by
               
>  Can minimize β by choosing critical region as all X 

s.t. lN(X) ≥ ca

–   Chose ca so that
    

� 

f0(X)dX =  α
w∫

  

� 

IN(X) ≡  f0(X) / f1(X)
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Caveats to ���
Neyman-Pearson

!  Neyman-Pearson limited
–  Only true for simple hypotheses

>  Not for composite hypotheses (where unknown 
parameter)

–  Compares two hypotheses
>  Depends on alternative hypothesis
>  Makes results model-dependent

!  But does give some insight
–  The ratio IN(X) is proportional to ratio of 

likelihoods

–  Provides guidance for definition of effective tests

  

� 

f0(X) / f1(X) ≅ L0(X) / L1(X)
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Definition of ���
Critical Region

!  Challenge is not to bias choice of critical 
region with data
–  However, observer required to understand data

>  Identify instrumental pathologies
>  Identify unexpected backgrounds
>  Estimate systematic uncertainties
>  Verify stable run conditions

–  Studies may lead to unconscious bias (see, eg. RPP plots!)

!  “Blind” analyses are popular
>  Study data complementary to signal
>  However, implementation varies

–  SNO’s pure D2O results set aside about 40% of data
–  Not clear that this really helps!

>  Even E787/E949 reserve right to examine background 
rejection
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Significance in Counting 
Experiments

!  Top quark search is textbook example
–  By 1991, CDF had ruled out top quark with mass < 91 

GeV/c2

–  Searching for top quark pair production and decay into
>  Lepton + n + jets ( 20%)
>  Dilepton + n + jets (8%)

!  In a sample of 20 pb-1, ���
expected handful of events
–  Large background from W + jets
–  “Fake” b-quark tags

q

q'

b

 
b

e or µ

beamline

ν



41PHY2407S 

Definition of the Measurement

!  Defined clear strategy in 1990
–  Identify lepton+jets and dilepton candidates
–  Count  “b” tags in lepton+jet events

>  Use two b-tagging algorithms
–  Use events with 1-2 jets as control
–  Signal sample events with ≥3 jets
–  Expected 3.5 evts (Mtop=160 GeV/c2)

–  For dileptons:
>  Require 2 or more jets
>  Expected 1.3 evts (Mtop=160 GeV/c2)
>  Observed 2 evts, bkd of 0.6±0.3 evts

Observed 13 tagged 
“b jets” in 10 evts 
 
    7 SVX tags 
    6 lepton tags 

Expect 5.4±0.4 tags 
from background 
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Significance Calculation

!  Calculated probability of background hypothesis
–  Dilepton significance αdil = 0.12
–  Used MC calculation

>  Treated background uncertainty as a normally distributed 
uncertainty on acceptance

–  For lepton+jets, MC gives
>  SVX b tags:  αSVX = 0.032
>   SLT b tags:  αSLT = 0.038

!  To combine, take into account correlations
–  Gives αtot = 0.0026
–  If assume independent, then

αtot = αdil αljets [1 – ln(αdil αljets )]
>  Gives αtot = 0.0088

–  Collaboration reported only “evidence for top quark….”
>  Factor 2 more data -- αtot = few 10-5
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Power of the ���
Top Quark Statistic

!  Choice of statistic driven by need to reduce 
background
–  Note εljets = 0.074 before b-tagging

>  Predict 12 events signal and 60 events background
>  Tagging efficiency 0.40

–  Background “efficiency” 0.09

–  Definition of “power” problematic
>  Arbitrary

–  Power of lepton+jets selection?  b-tagging?
–  A posteriori choice of X = Ntags + Ndil

>  Experimenter chooses “critical region” based on hypothesis
–  Lepton+jets Higgs search useδ different selection

          W H →  l ν b b

–  Usually characterized by sensitivity
>  Size of expected signal
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Significance using Data 
Distributions

!  Measurements often involve continuous observables
–  Can assess agreement with “null” hypothesis

>  Generally “goodness-of-fit” tests

!  Number of tests in common use
>  χ2 Test

–  Depends on choice of binning
–  Limited to “large” statistics samples

–  Bin contents > 5-10 (?) 

>  Smirnov-Cramer-Von Mises
–  Define statistic based on cumulative distributions SN(x)

–  Probability distribution for W2 independent of distribution
–  E[W2] = (6N)-1 and V[W2] = (4N-3)/180N3

>  Kolmogorov-Smirnov
–  Popular form of test based on SN(x)
–  Distribution for DN proportional to χ2 

  

� 

W2 ≡ SN(X) -F(X)[ ]∫ 2
f(X) dX

  

� 

DN ≡maxSN(X) -F(X)
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Multivariate Significance

!  Often difficult to reduce data to 1-dimensional statistic
–  Typical case has several variables

>  Different correlations between  signal and “null” hypothesis
>  Any straightforward transformation causes loss of information

–  Several techniques used
>  Characterize significance of each component and then combine into a 

single measure of significance
>  More sophisticated, e.g.

–  Combine information using any one of the techniques discussed by Prosper, 
Towers, etc.

!  In practice, two approaches:
1.  Assume independent statistics

–  Check for any correlations
2.  Model correlations using MC approaches or “bootstrapping”

–  Computationally expensive
–  Relies on understanding correlations



46PHY2407S 

An Infamous Example:���
“Superjets” 

!  CDF Run I data contained
–  Unusual lepton + ν + 2,3 jet events

>  13 events with jets that are both SLT and SVX tagged
–  Expect 4.4±0.6 events from background sources
–  Significance is 0.001!

–  Led to examination of 9 kinematical distributions
–  PT & η for leptons & jets, and azimuthal angle between 

lepton, jet
–  PT and η for lepton+jet system

>  Perform independent K-S tests 
–  Use control sample defined by events without a “supertag”

–  Combined significance of 1.6x10-6

>  Also defined a new statistic
–  Sum of K-S distances
–  MC gives significance of 3.3x10-6
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K-S Tests on ���
Superjet Data

!  Lepton η distribution

–  Some approximations:
>  Control sample events w/o superjet
>  Randomly pick 13 of 42 events
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Comments on Superjet Study

!  Choice of statistic (number of superjets) problematic
–  Made a posteriori after anomaly noted

>  Significance difficult to assess
–  Ignored lepton + 1 jet data (where one observes a deficit of events)

>  Why?

!  Choice of distributions also problematic
–  Justified a posteriori
–  Correlations difficult to assess

!  Aside:
–  Interpretation of excess requires unusual physics process

>  Not a problem in itself
>  But small statistics allow for many hypotheses



49PHY2407S 

Some Practical Proxies for 
Significance

!  HEP suffers Gaussian tyranny
–  Many people will quote numbers of “σ” as measures of significance

>  Belief that this can be more readily interpreted by lay person
–  Shorthand for the significance of an ns measurement

>  5σ seems to have become conventional “discovery threshold”
–   α  =  2.8x10-7

–  Used for LHC discovery reach

!  In situations where expected signal S and 
background B 
–  Various figures of merit

>  S/N -- signal versus noise
–  Doesn’t scale with N

>  More natural definition is

–  Just normal Gaussian ���
estimate of # of s.d.

–  Does scale with N

  

� 

S
B

See papers by 
Bityukov & Krasnikov 
for more discussion 
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The “Flip-Flopping” ���
Physicist

!  Feldman & Cousins highlighted the problem of 
“flip-flopping”
–  A physicist who uses

>  One set of criteria to set a limit in the absence of a signal
>  Different criteria to claim a significant signal

–  Results in confidence intervals with ill-defined frequentist 
coverage

!  This should be anticipated in any experiment that 
wishes to be sensitive to small signals
–  F-C propose their “unified approach”
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What About ���
Reverend Bayes?

!  Bayesian approach to classifying hypotheses is

–  Few comments:
>  P(X|Hi) is typically likelihood
>  Only meaningful in comparison of two hypotheses
>  Can handle composite hypotheses readily

–  Just integrate over any “nuisance” variables

!  Is it used?  Not often…
–  Only relative “degree of belief”

>  Requires at least two hypotheses
–  “Prior” avoidance
–  Challenges where single points in parameter space are 

important
>  Is sin2b = 0?

  

� 

P(H1 |X)
P(H0 |X)

= P(X |H1)
P(X |H0)

• π (H1)
π (H0)
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Some Recommendations

!  Define strategy in advance of data analysis
–  Otherwise, significance estimates could and will be biased
–  “Blind” analyses can play a role

>  However, this should not limit the ability to “explore” the data

!  Take consistent approach to CL setting & signal 
measurement
–  Avoid “flip-flopping” -- F-C offers one approach to this problem

!  Describe clearly how you are determining 
“significance”
–  Things to remember:

>  Definition of probability
>  Definition of critical region
>  What decisions were taken a posteriori?
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4.  Blind Analyses

!  To make inferences, we have to assume:
–  Random events free from correlation
–  More data results in greater precision
–  Procedures used are free of bias

!  Are these reasonable assumptions?

!  PDG has a set of “history” plots
–  Reveal that some measurements are ���

just wrong
–  Post mortems have indicated that some���

bias had crept into analysis
>  Looking for the right answer?
>  Selection biased by data itself?
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Piled Higher and Deeper

PHY2407S 

Piled Higher and Deeper by Jorge Cham  www.phdcomics.com

title: "Check it" - originally published 3/31/2014
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How Can This Happen?

!  Simple carton illustrates a typical situation
–  One is “exploring” the data
–  Finds a “cut” that miraculously reduces the background with 

high efficiency
–  But what is the right value of the cut?

!  In some cases, it is not so clear
–  Experimenter can make an ���

arbitrary choice
–  But behavioural psychologists claim���

there is no such thing!

A. Roodman, 
ArXiv:0312102v1 (2003) 
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Avoiding Experimenter’s Bias

!  A standard solution has been to formally “blind” 
the analysis
–  Define a priori  “signal region” or “measurable”���

 that will not be looked at during analysis
–  Define a procedure for “opening the box”

!  Now been used in HEP for about 20 years
–  Popularized by the BaBar collaboration

>  committed to using “blind techniques”
–  Goes back to 1662 by John Baptista von Helmont

>  Adopted in the biomedical community as the “gold 
standard” – double-blind studies – as far back as 1948
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Too Good to be True?

!  Actually, works pretty well in practice
–  Generally accepted as one strategy for reducing the bias

!  Some pitfalls/challenges:
–  “Blinding” obscures an unanticipated instrumental or 

theoretical problem
>  Discover that half the data was missed (true example)!

–  After “opening the box”, procedure changes because of 
ancillary studies or measurements

>  Current example in ATLAS is where 
–  Box opened and 5 signal events
–  New “jet cleaning tool being implemented” – kills 1 event
–  17% of background events also reduced, though 9 events in 

“sideband” all survived
–  Do you use the new “jet cleaning tool”?


