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Abstract

The concepif the “statisticalsignificance”of anobseration,andhow it is used
in particlephysicsexperimentss reviewed. More properlyknowvn asa “p-value’
the statisticalfoundationgfor this conceptarereviewed from a frequentisticper
spectve. Thediscovery of thetop quarkat the FermilabTevatronCollider anda
morerecentanalysisof datarecordedat Fermilabareusedto illustrate practical
applicationsof theseconcepts?

1. What Particle PhysicistsMean by Significance

Whenone of your colleaguesapproacheyou and declareghat shehasmadea “significant” obsenration,
intuitively thatmeanghat shehasobsered somephenomenavhoseinterpretationallows herto eliminate
or falsify one or more hypothesesand usually supportone or a small numberof alternatve hypotheses.
We furthermoreexpectthat the obseration hassuficient statisticalpower that we expectthat additional
obsenrationsare unlikely to changetheseconclusions. Scientistshave thereforeattemptedo identify a
consistenstatisticalframevork in which we canquantify this concepif “significancé.

In particlephysics,this conceptof statisticalsignificancehasnot beenemplg/ed consistentlyin the
mostimportantdiscoreriesmadeover thelastquartercentury Examplef themajordiscoreriesmadeover
anapproximatelylO yearperiodbetweerthe late 19705 andthelate 19805 illustratethis point.

Let us considerfirst the discovery of the T meson(andthe b quark)in 1977 by L. Ledermanand
colleagueg1]. This wasmadethroughthe obserationof p* .~ final statesin high-enegy proton-nucleus
collisionsat Fermilab,wherea large resonansignalwasobsered on top of a steeplyfalling backgroundf
dimuoncandidates.The experimentersestimatedhat they obsered a signalof approximately770 events
on top of anon-resonanbackgrouncbf 350 candidatesThey characterizedhe signalas“significant” but
madeno attemptto quantify or explain exactly whatthey meant.

The discovery of the W~ bosonat CERN in 1983 by the UA1 collaboration[2] was madeby ob-
serving6 eventsproducedn proton-antiprotorcollisionswherea high enegy electronor antielectronwas
obseredin coincidencewith asignaturefor arecoilingenegetic neutrino.The collaborationestimatedhe
backgroundo these6 eventsasbeing“negligible” andclaimeddiscovery of the expectedchaged weak
intermediatevectorboson.This obserationwassubsequentlgonfirmedby the UA2 collaboration.

The discorery of B mesonsin 1983 by the CLEO collaboration[3] was performedby carefully
reconstructing variety of differentdecaymodesandillustratinganinvariantmasspeakat5.4 GeV/c?. The
collaborationobsered a total event rate of 17 eventson a backgroundof betweerd and 7 events. They
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claimeddefinitive obseration of anew particle,but madeno statementhatquantifiedthe statisticalpowver
of the obseration.

As afinal example,| notethediscosery of B mesonflavour mixing in 1987by the ARGUS collab-
oration[4]. The experimenterobsered24.8 + 7.6 + 3.8 unexpectedsame-sigrdileptoneventsversusa
total of 25.2 &+ 5.0 £ 3.8 opposite-sigrdileptoncandidatesThey characterizedhisasa“3 ¢” obsenration,
namely thatthe probabilitythatthe obsered numberof same-sigrileptoneventscould have beenasgreat
or greatetthanthe obseredvaluewasequvalentto the probability of a Gaussiarstatisticbeingobsenedat
least3 standardleviationsfrom its expectedmean(a probability of 1.35 x 1073).

This brief review illustratesthat quantifyingthe statisticalsignificanceor power in seminalparticle
physicsmeasurementis not uniformly done. It alsoillustratesthatin atleastthe onecasein which it was
done,the significancevasdefinedasthe probability? of the “null hypothesis’having beenresponsibldor
theobsenration.

In this paper| will first review briefly theformal concepif “statisticalsignificancé. | will thendis-
cussseveralexampleshatillustratethe useof this concepin particlephysics.l donothave the opportunity
to review all of the techniqueghat have beenin recentuse,but refer the readerto otherarticlesin these
proceedinggfor examplethereview of the C'Ls methodby A. Read).

2. Formal Definitions of Significance
2.1 The FrequentistsPerspectve

Theconcepbf statisticakignficances formally introducedn the contet of hypothesigesting[5]. Suppose
that we have two hypothesesH, and H;, anda measuremenivhosevalueis a teststatistic X that, as
a randomvariable, provides somediscriminationbetweenthesetwo hypotheses.Let fy(X) and f1(X)
representhe probability distribution functionsfor X associateavith thetwo hypotheses.

Prior to makinga measurementf X, we would identify a “critical region; w, suchthatwe would
selecthypothesisH; if X € w and Hy otherwise.We now have four possibleoutcomesvhenwe make a
measuremertf X. If X € w andthe hypothesisH; is true,thenwe have selectedhe correcthypothesis.
If X € wandH, is true,thenwe have incorrectlyconcludedhat H; is true. Thisis known asa mistale of
thefirst kind, andthe probability for this decisionis

/ fo(X)dX = e 1)
Xew

The probability « is known asthe “significance”of thetest.

We have two otherpossibilities. Thefirstis if we measureX ¢ w when Hj is true. In this casewe
would have madethe correctinference. Finally, we have the casewhere X ¢ w and H; is true. Thisis
known asa mistale of the secondkind, andthe probability for thatdecisionis

/ f(X)dX = B, ®)
Xdw

The probability 1 — 8 is known asthe “power” of the test. The situationis illustratedin Fig. 1a). The
significancex is thereforea measureof the ability of a testto avoid mistalesof thefirst kind, whereaghe
power 1 — 3 measuregheability of atestto avoid mistalesof thesecondkind. In definingan“optimimum”
test,onewouldlike to chooseX andtheregionw suchthata andg areassmallaspossible.

2Unlessotherwisenoted,“probability” in this articlerefersto the frequentistefinition of this concept.
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Fig. 1: A schematiof thehypothesigestdescribedn thetext is shavn in a). The plot shavs the probability densitiefor X under
thetwo hypothesedd, and H, andonepossiblechoicefor theregionw. Theuseof the Neyman-Pearsoiheorenis illustratedin
b), wheretheratio Iy is plottedasafunctionof X.

2.2 Significancein Particle Physicists—The P-Value

The statisticaldefinition of significancas madein the context of choosingbetweerntwo hypothesesHow-
ever, theuseof significancen particlephysicsdiscoveriesis in a differentcontext. Thetypical caseis that
an experimentmakesa measuremerf the teststatisticX, say Xy. Furthermorepsingthe samenotation
asbefore,we assumeX hasa probability density fo(X) if the hypothesisHj, is true. We furtherassume
thatwe cancateyorizeobserationsof X into thosethataremoreandlessconsistentvith H, (for the sale
of discussion] will assumehatvaluesof X greaterthan X, arelesslikely given Hy). A measuref the
inconsistenyg of the obseredvalue X, with the hypothesis, is thenthe probability

/ fo(X) dX. 3)
X>Xo

This is formally identicalto the definition of the significancein Eq. 1 if we now definethe critical region
to bew = {X|X > Xy}, i.e. the probability of observinga value of X equalto or greaterthan our
obsenration. This probabilityis formally known asthe “p-value” of the obsenration, a cornventionthatthe
Particle DataGroupnow hasadopted6]. Theadwantageof usingtheformaltermfor this quantityis thatit
avoids confusionwith the concepif significancedefinedin hypothesidestswheretheregion w is defined
apriori, i.e. beforethemeasuremens made.

Thep-valuefor agivenmeasuremerdgnda specifichypothesiiasanumberof featuresFirst, it only
dependsn the measuremerdndthe probability densityfor the hypothesis.It is not a hypothesigest. It
only providesa measuref the consisteng of the hypothesisandthe measuremenin thatsenseijt is most
oftenquotedwhenonehasmadea measuremerihatappearso beinconsistenwith asinglehypothesisA
very smallp-valueis thenusedto supporttheinferencethatthe specifichypothesishouldberejected.

Referringthento the exampleof the discovery of BY mixing givenin Section1, we cannow say
that the p-value for the obsenation for the non-mixing hypothesisvas 1.35 x 10-3. From a frequentist
perspectie, if onerejectedthe non-mixinghypothesistthis p-valueandit wasalwaystrue,thenonewould
expectto bewrong (i.e, rejectthe correcthypothesispn averagel out of every 740times.



2.3 A FewMore Commentson HypothesisTesting

Although the literature usesthe p-value of an obsenration asa measureof its statisticalsignificance the
conceptof hypothesigestingis animportantonein particle physics. One seesit mostoften usedin the
contet whereoneis designingor proposingan experimentand wishesto characterizahe experiments
ability to distinguishexisting andknown physicsphenomenégsuchasthatpredictedby the StandardModel)
from possiblenew physicg[7].

In thosecasesa crucial aspecof the experimentdesignis the selectionof the optimal statistic X
andthe optimal critical region. For a specificmeasurementuchasthe obseration of a processabore
someexpectedoackgroundate,the choiceof X will dependon the measuremerdandtheingenuityof the
experimenterOnewould lik e to identify teststatisticshathave quitedifferentprobability densityfunctions
for the hypotheseyou wish to distinguishin orderto be ableto definea critical region with the smallest
possiblea and 5. At the sametime, the decisionshould be informed by the effect of ary systematic
uncertaintieshatmaydegradethe separatiorbetweertwo hypothesesTo thatextent,oneoftenattemptgo
identify statistichatarenot expectedio be affectedby systematiaincertainties.

2.4 Neyman-RearsonTheorem

Hypothesigestinghasanextensie literature but relatively few generaresultshave beenidentifiedthatcan
guideour judgement.Oneresult,known asthe Neyman-Pearsoitheoremiis surprisinglyuseful,andit is
worth reviewing herefor theinsightit provides.

Supposewve have two hypothesesH, and H;, andwe have defineda teststatisticX. Thenfor a
given significanceq, we candefinethe region w which givesus optimal g (i.e., the smallestvalue of
andthereforethe greatesstatisticalpower) by choosingw asfollows. We first form theratio of probability
densityfunctionsfor thetwo hypotheses

fo(X)
fi(X)

The Neyman-Pearsoitheoremthen concludeghat the optimal region w is the oneover which Iy (X) is
maximal,namelythatwe find the valuec,, suchthatwhen

IN(X) =

(4)

w = {X|In(X) < ca}, (5)

the probability of observingX € w is

/ fo(X)dX = o (6)
Xew

This constructionis illustratedin Fig. 1b).

TheNeyman-Pearsotesthasonesignficantimitation—it is only valid for whatareknown as“simple
hypothese’,or hypothesesvherethereareno unknavn parametershatwould be estimatedrom the data.
In addition,sinceit is only applicablevhencomparingwo hypothesest cannotbeemplo/edin casesvhere
you have multiple alternatve hypotheseso consider However, despitethesdimitations,thistheorengives
us considerablensight into the definition of the critical region. For example,we canrelatethe ratio of
probabilitiesto theratio of likelihoodsof thetwo hypotheses:

fo(X)  Lo(X)

Ivx) = AX) T LX) (7)




whereL;(X) arethe likelihoodfunctionsdefinedfor the two hypotheses = 0 andi = 1. This suggests
thatthelikelihoodratio is onesourceof guidancefor definingcritical regionsthathave significant(though
perhapshot optimal) power.

3. The BayesianPerspectve

Our considerationsip to this point have beenfrom a frequentistperspectie, usingthe standarddefinition
of afrequentistprobability In calculatinga p-valuefor a measuremengnehasto assume hypothesisand
thendeterminethe probability (or probability density)for all possibleoutcomesf the measurement.

A Bayesianstatisticiandoesnot considerdata other than the single measurement.However, for
eachhypothesisthe Bayesiancould definea credibility internval thatreflectshis or her degree-of-beliefin
eachhypothesisandtheratio of thesecredibility intervals—whats calledthe “Bayesdiscriminantfactor’—
becomes measuref therelative confidenceonehasin thetwo hypothesisFormally, thisratiois

P(Ho|X) _ Lo(X) mo(X) 8)
P(H\|X)  Li(X) m(X)’

wherem,(X) andm(X) aretheprior probabilitiesassociatedvith thetwo hypotheses.

This ratio canbe usedto rejectone of the two hypotheses.The Bayesiansvould argue that there
is no benefitin attemptingto make anything but a relative statementboutthe degree-of-beliefof the two
hypothesesThus,thereis no directanalogyto the p-valuein this framewvork. The advantageof this per
spectve is thatit avoidsthe needto understandhe probability densityof all possibleoutcomedor agiven
hypothesislt alsohasthe advantagethatary inferences/ou draw arelesssensitve to anoutcomethathas
a low probability regardlessof the hypothesis.In suchcasesthe Bayesdiscriminantfactor still provides
information,whereagshe p-valueis nolongervery informative andcouldin factbe misleading.

The disadwantageswith this Bayesiamapproachare, however, thatone hasto assumeprior distribu-
tions for eachhypothesisand oneis only allowed to make relative confidencestatementsbouttwo hy-
potheseskFor thesereasonspnefindsvery limited useof the Bayesdiscriminantfactorin particlephysics.

4. P-Valuesand Experimental Design

The definition of significancein termsof a p-value for an obseration immediatelymales clearthe im-
portanceof a priori decisionson the randomvariablesone will measureand how onewill definethose
obsenrationsthat preferone hypothesisover another A carefully designedexperimentwill identify these
andoptimizetheir choicebeforeary datais analyzed.

However, mary particle physicsexperimentsmake uniguemeasurementssinggeneral-purposap-
paratusdesignedo studya large classof processesThus,it is difficult, andoftenimpossible to anticipate
whatonewill obsere andhow. In fact, earlystudiesof the datawill oftenguidethe experimentergo focus
in specificfeatureghatappeaunusualbr unexpected.In this context, the evaluationof a p-valuemayprove
very difficult.

A simple exampleillustratesthis problem. Supposeone measuresn invariantmassspectrumin a
specificregion, say [m1, ms|, andoneobseresa narrav enhancemerit a small massintenal, say Am
wide, of N, eventsabore anexpectedbackgroundf N, events.In this case,jt would be naturalto assume
thatthe hypothesisve wish to testis the“null” hypothesisvherewe expect N, eventsin this massintenal
Am andthendeterminethe probability of observingatleastN, events.Assumingthatthe backgroundate



is well knowvn (andsowe canignoreits uncertainty)the p-valuefor this obseration would be given by the
Poissomprobabilityfor observingat leastV, eventswhenthe meanrateis IV, or
— exp (=Np) (Np)"

a=Y ) 10 ©)

n=~N,

However, this probability doesnot take into accounthefactthatwe areconsideringall possiblechoicesof
massintenal Am in theregion [m, ms].

A properestimateof this p-valuewould thenhave to includethelikelihoodof observingat leastN,
eventsin any possibleintenal Am. Thisincreaseshe p-valueof the obseration,andchangeshe possible
inferenceonecanmale. For example,a Monte Carlo calculationwheredm is 1% of theintenal, N, = 8
eventsand N, = 100 (i.e., the averagenumberof eventsin ary dm intenal is one)givesa p-valuethatis
500timeslargerthantheresultin Eq. 9.

4.1 Blind Analyses

Theprevalenceof the p-valuein makinginferencesestsontheassumptiorihatit is possibleto estimatehe
frequeng of all obserationsof the teststatistic,andthatit is possibleto identify the classof obserations
that arelessconsistenwith a given hypothesigthe critical region in the languageof hypothesigesting).
This is inherentlydifficult in caseswhereone allows the definition of test statisticand critical region to
dependon the actualexperimentaloutcomeitself. A tactic to eliminatesuchbiasis the “blind analysis,
whereonedefineshecritical region andthe statisticwithout knowledgeof therelevantdata[8].

The ideal experimentis onein which the measuremenandary calculationof its p-value doesnot
have to beinformedby the dataitself. No choiceswith regardto selectionof data,modificationsin thetest
statisticor choiceof critical region would thenbe allowed oncedatacollectionhasstarted. This approach
avoidsthe possibility of selectingconsciouslyor unconsciouslyacritical region or teststatisticthattendto
favour or disfavour a given hypothesisased on the data observed.

A numberof celebratedailuresof inferencein particle physicsover the last half-centuryillustrate
whathappensvhenthe experimentemllows thedatato guidehis or herchoicesn makinginferencesabout
data[8]. In all thesecasesthe quotedp-value hasbeenassessethcorrectlybecauseét hasfailed to take
into accounthow the frequeng of a given obsenration would be affectedby makingchoicesaboutthe test
statisticandcritical region basedon the actualdistribution of the dataitself.

4.2 Useand Limitations of Blind Experiments

The simpleexampleof “bump hunting” illustratesthe fundamentaproblemin particle physicswhereone
is searchingfor evidenceof nev phenomenaijt is inherentlydifficult to identify a priori what classof
obserationsone would expectto usein sucha search. Besidesthe difficulty of definingin advanceall
possiblemeansf separatingsignal” from “background, it is alsodifficult to limit acces$o datawhenone
alsohasto verify thattheinstrumentations working correctlyandthatary artefactscreatedby effectssuch
asmiscalibrationanderrorsin bookkeeppingareidentifiedandmitigated. The experimentdesignalsohas
to allow the experimenteraccesgo the datato measureherateof backgroundeventsin the signalsample.

Despitethesechallengesthe eliminationof certainbiaseghatareotherwisedifficut to controlmake

ablind analysisanattractve approachgiventhe benefitsof beingableto malke straightforvard estimateof
p-valuesfor the possibleoutcomesThis techniqués reviewed in anothercontrikution to theseproceedings

[8].



5. P-Valuesin a Counting Experiment
5.1 General Considerations

A commonparticlephysicsexperimentinvolvesthe searchHor newv phenomendy observinga uniqueclass
of eventsin particleinteractionghatcannotbedescribedy backgroundypothesesOneusuallycanreduce
this problemto that of a “counting experiment, whereoneidentifiesa classof eventsusingwell-defined
criteria, countsup the total numberof obsered events, N,, and estimateshe averagerate of events, Ny,
thatcomefrom the variousbackgroundprocessesOne canthenperforma straightforvard estimateof the
p-value of a given obsenration of N, events,assuminghatthe probability densityfor therandomvariable
N, follows a Poissordistribution, i.e. theformulain Eq.9.

Thereare severalissuegthat even this simple problemhasto address First, onehasto be surethat
the criteriausedto selectthe classof eventswasnot in itself biasedby how N, variedasthe criteriawere
modified.Hereis whereablind analysishasits greatesbenefit,sincethis biasis explicitly guardedagainst.
Secondpnehasto take into accountpossibleuncertaintiesn the estimateof the backgroundrate N,. It
is beyond the scopeof this article to discusghis issue,andthe interestedeaderis referredto the growving
literatureonthistopic[9] (atypicalfrequentistpproachs to extendtheensemblef possibleneasurements
to includethoseexperimentswith differentvaluesof N, consistenwith the knowledgeof N). Third, the
carefulexperimentehasto malke surethatall informationrelevantto the searchs usedin themeasurement.
It is at bestinefficient and at worst misleadingto ignorerelevant data(for example,a possiblechannelin
which the numberof obsened eventscanprovide additionalinformationon the proces$eingstudied).

As a concreteexampleof the calculationof a p-valuefor a typical countingexperiment, will sum-
marizethetechniquesisedby the CDF andD0 collaborationsn their searcHor top quarkproduction.

5.2 The Top Quark Search

The top quarkwasdiscoveredby pairproductionin proton-antiprotorcollisionsat an enegy of 1.8 TeV
[10, 11]. Thetop quarkdecayspredominantlyvia the process — Wb, with the W bosonsubsequently
decayingeither leptonicallyvia W — [y, (where“l” canbe eitheran electron,muonor tau lepton) or
hadronicallyvia W — ¢q' (the quarkfinal statesare eitherud or ¢5). This resultsin threecateyoriesof
possiblefinal stateswith differenttopologiesefficienciesandbackgroundates:

1. thelepton+jetschanneljnvolving onehigh enegy lepton,a neutrinoandthreeor morejetsfrom the
hadronicdecayof the W andtheb quarks,

2. thedileptonchanneljnvolving two high enegy leptons evidencefor two neutrinos andtwo or more
jetsfrom the b quarks,and

3. thehadronicchanneljnvolving atleastsix jets.

In both experiments,one had to useadditionalcriteria to improve the signal-to-noiseratios in the final
candidateeventsamplesFor CDF, themosteffective wayto do thiswasto requireevidencethatatleastone
of thejetsarosefrom a b quarkusingtwo different“b-tagging” techniques.Thus, one could characterize
the final statesby the numberof b tags,with the eventswith one or two b tagshaving increasingpurity.
For D@, themosteffective way to reducebackgroundsvasby imposingmorestringentkinematiccriteria (a
topologicalselection)andusingsoft muonb-tagging.

Thesearchesiseddatasamplef increasingsensitvity. Thefirst reporteddatacameafterthe CDF
andD0collaborationshadrecordedl9.6and15.0pb !, respectiely [12, 13]. At thattime, theexperiments
hadnot completedanalysisof the hadronicchannelsyhich wereexpectedo be dominatedby background.



Final State Obsenation ExpectedBackground Bx Efficieny ExpectedSignal
(events) (events) (events)
CDF
Lepton+ Jets(SVX b-tags) 6 2.34+0.3 0.015 2.4
Lepton+ Jets(Softleptonb-tags) 7 3.1+0.3 0.012 1.9
Dileptons 2 0.6 +0.3 0.008 1.3
DO
Lepton+ Jets(Softleptonb-tags) 2 0.6 £0.2 0.009 1.0
Lepton+ Jets(Topology) 4 1.8+ 0.9 0.026 2.8
Dileptons 1 0.8+ 0.1 0.007 0.7

Table1: The obsered numberof top quarkcandidatesthe expectedbackgroundate,the overall branchingratio timesefficiency
for the channel andthe expectednumberof signaleventsassumingatop quarkwith amassof 160GeV/c? for eachfinal state.

Final State P-Value
CDF
Lepton+ Jets(SVX b-tagging) 0.032
Lepton+ Jets(Softleptontagging) 0.038
Dileptons 0.012
Combined 0.0026
DO
Combined 0.072

Table2: The p-valuesdeterminedor the obsered eventratesassuminghe StandardModel backgroundprocessedy the CDF
and D0 collaborations.The DO collaborationonly reporteda p-value for the obseration of 7 candidateaventswith an expected
backgroundf 3.2 + 1.1 events.

Theresultsof theseanalysesaresummarizedn Tablel, wherewe list the numberof obsened events,the
estimatedackgroundates andthe branchingratio timesefficiengy of observingat ¢ decayin eachmode.

Thecollaborationgvaluatedhe statisticalsignificanceof their databy usinga Monte Carlocalcula-
tion to estimatethe frequenyg thatthe expectedbackgroundprocessesvould createa combinedsignalthat
wasat leastaslarge asthatobsered. The Monte Carlocalculationcreatecan ensemblef experimentghat
modelledthe possibleobsenrationsin all channelsassuminghe StandardModel backgroundhypothesis.
For a given channel the estimatechackgroundatewasusedasthe meanof a Poissondistribution of ob-
senedevents.In orderto accountor uncertaintiesn the backgroundate,the meanvalueusedto generate
anev memberof the ensemblavasobtainedby samplinga Gaussiardistribution with the meanandwidth
of the estimatedbackgroundate[9]. Theresultsof thesep-value calculationsaresummarizedn Table2.
Thecollaborationconcludedhattheindividual obserationsdid not provide sufiicient evidenceto exclude
thebackgrounchypothesis.

The collaborationsproceededo determinehow likely their set of obserationswere assuminghe
backgrounchypothesidy identifying a statisticthat combinedthe obserationsin theindividual channels.
In the caseof a countingexperimentinvolving sereral channelsthe maximumlik elihood estimateof the
rateof the processs simply the sumof theeventratesin eachchannel.Thus,the naturalstatisticto evaluate



the combinedsignificanceof the obserationswasthe obserned sumof eventsin all channels.However,

the CDF collaborationnotedthatthe mostsensitve measureof the crosssectionwasnot the total number
of obsered eventsin their sample but the total numberof obsered b-tags(sincetherewasa muchlarger
probability of observingtwo b-tagsin a signaleventthanin an eventfrom a backgroundorocess).Thus,
CDF choseasits statisticthe sumof thenumberof b-tagsin thelepton+jeteventscombinedandthenumber
of dileptonevents.Sincethe D0 datareliedlessonb-tagging,thecollaboratiorchoseto usethetotalnumber
of obseredevents.

The calculationof the p-value of the obsenation assumingthe backgroundhypothesiswas per
formedby a Monte Carloprocedurdahateffectively createda setof “pseudo-g&periments. In eachpseudo-
experimentthenumberof b-tagsanddileptoneventsfrom thedifferentbackgroundourcesvasdravn from
a Poissordistribution thathadasits meanvaluethe estimatedackgroundatefor the process.The uncer
tainty in thevariousbackgroundccomponentsvastakeninto accountasdescribedbore, aswasthecorrela-
tion in the differentbackgroundsources.This correlationarosefrom the factthata numberof background
sourcescontributed both typesof b-tags,whereasothersdid not. In effect, this increasedhe frequeng of
observinga larger numberof b-tags(sincenow thefluctuationsin thetwo componentsverecorrelated).

The resultingp-valuesaresummarizedn Table2. Oneseeghatthe singlemostsignificantp-value
was2.6 x 1073, If onehadnot taken into accountthe correlationsbetweenthe backgroundsourcesthe
combinedp-valuewould have beenl.6 x 103, or afactorof almosttwo smaller Alternatively, thecombined
p-value determinedby just countingeventswould have beenapproximatelyl0~2. This demonstratethe
sensitvity of a p-value calculationto the approximationsusedto determineit. Givenall this information,
both experimentsconcludedthat the obserationswere not sufficiently compellingstatisticallyto exclude
thebackgrounchypothesis.

5.3 SignificanceRequiredfor Discovery

In the searchfor the top quark,the CDF and DO collaborationsarguedthat obserationswith p-valuesof
order10~3 werenot suficiently significantto be usedto claim discovery of a new phenomenonAlthough
this is clearly a matterof opinion, it is roughly consistentwith the practicein the field, wheretypically
the “50” standards usedasroughrule of thumbto definethe sensitvity necessaryor discovery. This
correspondso a p-valueequivalentto betweers.7 x 10~7 and2.8 x 10~7, dependingn whetheryou are
searchingor a deviation from a meanor a one-sidedluctuationfrom themean.

As a concreteexample,the two Tevatroncollaborationsusedan identicalanalysisprocedurevhen
approximatelya factorof two moredatahadbeenrecordedoy both experiments.Theresultingp-valuesof
the CDF and D0 obsenrationsassuminghe backgrounchypothesisverel x 10~% and2 x 10—, respec-
tively [10, 11]. Both experimentoncludedhatthe backgroundhypothesisould be excludedandclaimed
obsenration of top quarkpair production.

6. P-Valuesfor Continuous TestStatistics

High-enegy physicsmeasurementsften examine statisticalvariablesthat are continuousin nature. In
fact, to identify a sampleof eventsenrichedn the signalprocesspneoftenimposesselectiorrequirements
on suchcontinuousvariables. Often, it is importantto take into accountthe entire distribution of a given
variablefor a setof events,andnotjustwhetherthe eventslie in a givenrangeof values.

The generalproblemcanbe posedin the following way. Supposeve have a setof eventdataeach
characterizetdy asetof statisticsX;, where; = 1 to N. In addition,onehasa hypothesigo testthatpredicts



the distribution of X, sayf(X'; &), wherewe assumehis functionto benormalizedto unity betweenX,,,;,,
and X,,qz, theminimumandmaximumvaluesof X, anda is a setof parametershatareeitherknown or
estimatedlirectly from the data. Thenthe generajproblemis to definea statisticthatgivesa measuref the
consisteng of thedistribution of datawith thedistribution givenby the hypothesis.

6.1 PossibleTools

Themostwidely usedsuchstatisticin the 1-dimensionatases aform of a“runstest; which compareshe
predictedcumulatve distribution

X

90 = [ (') ax’ (10)
Xmin

with theobsered cumulatve distribution 2(X'). Themostcommontestis the Kolomogore-Smirnos (K-S)

test[14], which makesthis comparisorby first finding the K-S distance

6 = max {|g(X) — h(X)|, X € (Xmin, Xmaz)} (11)

namelythelargestdifferencebetweerthetwo cumulatve distributions. This teststatistichasacharacteristic
distribution thatcanbe calculatedanalyticallyto provide onewith a p-value,specificallythe probabilitythat
onewould obsere avalueof this teststatisticaslarge asor largerthanthe obseredvalue.

TheK-S testgivesadistribution-freemeasuref the consisteng of a 1-dimensionatontinuousvari-
ableandis oftenusedin the particlephysicdliterature.Althoughtherearea numberof otherteststhatcould
beusedin thiscaseall with similar propertied15], theK-S testhasbecomeareferencestandardo employ.

6.2 Extensionto Higher Dimensions

The K-S test (and otherrunstests)arein principle limited to 1-dimensionaldistributions, but thereare
extensiongo the caseof severaldimensionsthoughwith a numberof restrictions.The extensionrequires
oneto assumehatthe probability distribution predictedby the hypothesisanbefactorized sothat

F(X) = f1(X0) fo(X2) -+ fu(Xi), (12)

wheren is the numberof continuousrariablesbeingcomparedThisin effectrequireseachof thevariables
to be uncorrelateda strongassumptiorandonethat hasto be verified in practice. With this assumption,
however, one canthendefinea setof independenstatisticsé;, ¢ = 1 to n, andthe associategh-value for
eachobsered K-S statisticp;. Thenonecancombinetheseindependenp-valuesinto a singlemeasureof
significance.

6.3 Example: CDF “Superjets”

A concreteexampleof this techniqueis a recentanalysisof hadroncollider dataperformedby the CDF

collaboration. A studywasperformedof eventsthat were consistenwith the productionof one or more
hadronicjetsanda W bosondecayingto a lepton-neutringair. The collaborationdefineda subsamplef

theseeventswhereatleastonejet wasidentifiedasa“superjet”,namelyab-quarkcandidatget with boththe
presencef asecondaryertex in the jet displacedrom the interactionvertex andthe presencef a second
leptonassociatedvith thejet consistentvith comingfrom the semileptoniaecayof ab hadron[16].



The collaborationfound 13 sucheventsin the 1992-96TevatronCollider data,wherethey estimated
thatthey would have expectedt.4 £ 0.6 eventsfrom Standardviodel backgroundsourcesThis obseration
hasa p-value of 0.001, treatingit asa countingexperimentand using the techniquesgntroducedabore.
The authorsthenproceededo examinenine separatkinematicvariablesthat haddistributions that were
predictedto be largely uncorrelatedbut that might distinguishbetweenthe StandardModel backgrounds
andavarietyof exotic source®f events.A typical exampleof suchacomparisorns givenin Figure2, where
theobsereddistribution of theleptonpseudorapidityn = — Intan(6/2), wheref is theangleof thelepton
relative to the incomingprotonbeamaxis) is comparedvith the predictedy distribution2 The plotson the
right-handsidearethe distributions of the K-S distanceasdeterminedrom a Monte Carlocalculation.

The p-valuesfrom eachof the distributionsweredeterminedandrangefrom 0.001to 0.15. The au-
thorscommenthat“giventhea posteriori selectionof the 9 kinematicalvariablesthe combinedstatistical
significancecannotbe unequvocally quantified. However, we candeterminea combinedp-value by cal-
culatingthe productof the 9 p-values,p;,:, anddetermininghow likely it would be to obtainthis product
valueassuminghebackgroundcypothesisThisis givenby

9 m—1 n k
Pur=TI [Z %] (13

m=1 Lk=0

andequalsl.6 x 10~% assuming/ou setasidethe reserationsof the authors.

This estimateof the overall p-valueraisesa numberof commentsFirst, arethe variablessuficiently
uncorrelatedhatary residualkcorrelationsanbeignored?Varioustestsweremadeof thisassumptionby the
authors but no rigorousamgumentwaspresented Seconduncertaintiesn the StandardModel predictions
have not beenincorporatednto the p-value calculation. Thesemay have someeffect on the overall result,
but it is unclearhow largethis might be. Third, the effect on the p-valueestimateof the a posteriori choice
of variablesis virtually impossibleto assessA studyof a seriesof alternatevariableswere madeby the
authorsput no firm conclusioncouldbedravn.

Of these,perhapghe third is the mostvexing. It is true that the choiceof the 9 variablesfor this
analysiswas madeafter the 13 event datasamplehad beenidentified as being unusual. In that senseijt
is no longer possibleto argue that the quotedp-value is an unbiasedmeasureof the significanceof the
obsenration.

In this casethe beststratgy is to repeathe measuremenwith anindependentiatasampleto deter
mineif the sameeffectis obsered. However, this analysissenesasa goodexampleof theissuesonemust
facein makingsucha multi-variateestimateof significance.

7. Obsewationson Curr ent Practice and Summary

Particle physicistshave increasinglyrelied on numericalestimatef statisticalsignificance.The literature
is repletewith the useof the p-value, andthis appeardo have developedinto one commonmeasureas
illustratedby the examplesprovided above. Othermeasure®f significanceare often quoted,suchasthe
eguialentnumberof standardleviationsameasurementes from thevaluepredictedby a hypothesisThis
is, of coursejusta p-valueundera differentname.

3The authorschosebackgrounddistributionsfor thesefiguresobtainedusingMonte Carlo calculations put usedbackground
distributions for their p-value calculationsobtainedby “bootstrapping, usinga complementarydatasamplethat had no signal
eventsandthatwasarguedto provide a goodcharacterizationf the expectedStandardModel backgroundsThe StandardModel
Monte Carlocalculationgesultedn similar p-valueestimates.
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Fig. 2: Then distribution of theleptonfrom the W bosondecayin the CDF “superjet”eventsis shavn in thetop-left plot (points)
andcomparedwith the Standardviodel prediction(shadechistogram). The top-right distribution is the expecteddistribution of
K-S distanceof the 13 dataeventsandthe SM predictionin the top-left plot. The vertical line is the K-S distancefor the two
distributions. Similarly, the bottom-leftplot is the lepton# distribution for the complementarysampleof dataeventswherea
“superjet”is not detectedandthe bottom-rightplot givesthe distribution of the correspondind<-S distancebetweerthe dataand
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predicteddistribution. The K-S testdistributionsweregeneratedisinga Monte Carlo calculation.



More significantly thereareconsistenattemptsn theliteratureto includein p-valueestimatesnore
completeinformationabouta given measurementsuchasthe sensitvity of the estimateto systematiaun-
certaintiesandinformationfrom several statistics.The moredifficult problemof avoiding unconscioubias
in the selectionof statisticsis addressedhroughthe useof “blind analyses, but the effective application
of suchtechniquego truly serendipitousliscoseriesis problematic.Here,the time-honouredechniqueof
testingspecifichypotheseslevelopedthroughthe studyof onedatasetby creatingandanalyzinganinde-
pendentdatasetwith at leastcomparablestatisticalpover remainsthe mosteffective tool for separating
whatwe would call the “statisticalfluctations”from first evidencefor truly new phenomena.

Finally, whatis an appropriatecriteria for claiming a discosery on the basisof the p-value of the
null hypothesis?The recentliteraturewould suggesa p-valuein therangeof 10~6, comparabldo a“50”
obsenation, providescorvincing evidence.However, the credibility of sucha claimreliesonthe caretaken
to avoid unconsciou®diasin the selectionof the dataandthetechniqueshosero calculatethe p-value.
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