

Outline

- **1. Introduction to Boosted Top Quarks**
- 2. Early Work
- 3. QCD and Top Jets
- 4. Top and Bottom Tagging Algorithms
- 5. Performance
- 6. Searches
- 7. Summary & Conclusions

What Are Boosted Top Quarks?

Top quark production is ubiquitous at LHC

• σ = 749 ± 57 (stat) ± 79 (syst) ± 74 (lumi) pb

ATLAS-CONF-2015-049

Very high- P_T Tops are Rarer

Why the Interest in Boosted Tops?

Top quarks play a special role in many models for new physics, eg.

- Couple to new force carriers
 - Leptophobic Z' preferentially decays to top quark pairs Rosner, PLB 387 (1996) 113
 - W' bosons could decay to t-b pair
- String-inspired resonances
 - Randall-Sundrum KK gluons/gravitons (g_{KK},G_{KK}) favourite "wide" resonance

Agashe et al., PRD **77**, 015003 (2008) ; Lillie et al., JHEP **09** (2007) 074

- New phenomena
 - Vector-like top quark partners
 - Supersymmetric top partners

Agular-Saavedra et al, PRD **88**, 094010 (2013)

000

Strategies for Detection

Two strategies for detecting boosted tops

Top p_T > 300 GeV

🗕 data ٦tī

W+jets

Z+jets

diboson

250

large-R jet mass [GeV]

300

single top

- 1. Use semi-leptonic top quark decays and b-tagging
 - Branching ratios are small
 - Lepton ID is a limiting factor
- Use fully-hadronic decays 2.
 - Detect top quarks through jet substructure
 - Use b-tagging for additional rejection
 - Background calculations are difficult

I'll focus on the second

- In practice, largest BR (2/3)
- Provides avenue to better understand QCD jet physics
- Not a new idea!

Long list of references....

100

1800 ATLAS Preliminary

√s = 13 TeV, 3.2 fb⁻¹

anti-k, R=1.0 jets

Trimmed (f_{cut}=5%, R_{sub}=0.2)

150

ATLAS-JETM-2015-004

200

Events / 10 GeV

1600E

1400

1200

1000

800

600

200

Data/Sim. 1 2.0

LHC Data Samples

LHC has run very well

- Have ~5 fb⁻¹ sample at 7 TeV (2011)
- Have ~20 fb⁻¹ sample at 8 TeV (2012)
- Have 3.9 fb⁻¹ sample at 13 TeV (2015)

These data samples have enabled detailed jet and E_T^{miss} reconstruction

• Pileup conditions similar to 2012

We believe there were 17 collisions...

ATLAS Progress in Boosted Top Quark Physics

LHC "Fat Jets"

Jet reconstruction

- Use Anti-kt jet algorithm
 - For these studies, using R=1.0 to capture top decay products
- Employ some form of jet "grooming" to . address pile-up
- Calibrate energy and • mass scales using standard tools

Addressing Pile-Up

Jets are extended objects

 Contributions from additional interactions have significant effect on observed properties

Various strategies to address

- Correct with average calibration
 - Only used at Tevatron, and never on jet substructure
- Correct event-by-event
 - Works OK but cumbersome
- Can "cut-out" pile-up contributions
 - This is method of choice
 - Requires careful calibration

Jet Trimming

Approach is jet "trimming"

- Anti-kT cluster with R=1.0 $p_T^{R1.0}$
- Anti-kT cluster constituents into R=0.2 "subjets" •
- Keep subjets with pT > 0.05 $p_T^{R1.0}$ ٠
- Recombine and re-calibrate

Takes care of pile-up

- But also "suppresses" • Sudakov peak
- Rises slowly with jet p_{T} •
- Implications for • very high pT jets

×10³

3-ATLAS Preliminary

anti- $k_t (R, R_{sub}, f_{cut}) = (1, 0.2, 0.05)$

√s = 13 TeV

ATLAS Progress in Boosted Top Quark Physics

400

300

Jet Mass Isn't Everything

Top decays have 3-prong kinematics

 Light quark and gluon jets with high mass largely result from single gluon emission

Many strategies have been considered

- Eight algorithms compared in ATLAS-CONF-2015-036
 - HEPTopTagger was considered superior
 - But has large systematic uncertainties
- Taken a simpler approach for "top-tagger"
 - N-subjettiness measure

Aside: Trimming Cuts Out QCD Too

Trimming removes part of the QCD jet as well

- Current parameters f_{cut}=0.05 and R_{sub}=0.2 remove 100 GeV subjet for a 1 TeV object!
 - What are the "correct" parameters?
- Requires that we believe in our fragmentation models in order to calibrate correctly
- Also are competing schemes for this
 - Mass-drop
 - C/A clustering

Current Choice of Algorithms

Looked at algorithm with 2 variables:

Optimitized for jets with $p_T > 500$ GeV,

- M_{jet} > 125 GeV
- T₃₂ > 0.58

B Tagging Algorithms

ATLAS uses a multivariate algorithm to tag "b-jets"

- Combination of tracking, vertex and kinematic information
- Usual operating point of 70% efficiency, <1 % mistag rate .

A 13 TeV Top Tagger

Put together top-tagging and b-tagging

- Require two R=1.0 jets
 - p_{T1} > 500 GeV and p_{T2} > 450 GeV
 - Require both are top-tagged
 - Require both have R=0.4 subjet that is b-tagged

Three 13 TeV analyses underway

- Two searches for resonance structure in m_{tt}
- Measure differential cross section for boosted top quarks

Results not yet public

- Expect to be dominated by SM top quark production
- Forms the irreducible bkgd

Searches for X->ttbar or VV

Various theories beyond the SM predict resonance states

- Masses > 0.5 TeV with widths ranging from 1-2% to 10-20%
- Decay preferentially to ttbar or VV final states

Two "benchmark" scenarios have been used

- A narrow Top Colour Z' boson (Γ/m = 1.2%)
- A broader Kaluza-Klein excitation of gluon (Γ /m = 17%)
- Experimental mass resolution is about 10%

Lead to top-quark pair final states characterized by high- p_T , "boosted" top quarks or vector bosons

- p_T of daughter determines signature for hadronic top decays
- Searches have used "lepton+jets" with boosted topologies and fully hadronic boosted searches

ATLAS Boosted Hadronic Search (I)

ATLAS implemented several top-tagging techniques in 7 TeV pp data

ATLAS, JHEP 01 (2013) 116

- 1. HEPTopTagger
 - Two CA jets with D=1.5, p_T>200 GeV and |η|<2.5, split into sub-jets (up to five retained)
 - Reclustered into three sub-jets required to be consistent with top quark (140 < m_{iet} < 210 GeV)
 - Require a D=0.4 anti-k_T cluster to be b-tagged
- 2. Top Template Tagger
 - Two anti-k_T jets with D=1.0, p_T >450 GeV and $|\eta|$ <2.0, leading jet p_T >500 GeV
 - Require jet to be consistent with top quark through "template overlap" technique
 - Require a D=0.4 anti-k_T cluster to be b-tagged
 - Multijet backgrounds estimated from data
 - Limited by SM ttbar background

ATLAS Boosted Hadronic Search (II)

2350 80 80

S 300

Events / 250 200

150

100

50

Data 2011

Multijet

ATLAS $\int L dt = 4.7 \text{ fb}^{-1}$

1S = 7 TeV

HEPTopTagger

Πtť

Z' (1 TeV) σ = 1.3 pb

Backgrounds estimated using data-driven and MC calculations

- Multijet backgrounds estimated by mistag rates
- SM ttbar estimated with MC@NLO+HERWIG showers Estimate systematic uncertainties
- Set 95% CL limits using Bayesian calculation

ATLAS Boosted I+jets Search (I)

Searched in 20.3 fb⁻¹ of 8 TeV data using lepton+jets channel with 2 analyses

- 1. Boosted analysis:
 - Isolated e candidate with p_T>25 GeV and |η|<2.4 with E_T^{miss}>30 GeV and m_T>30 GeV
 - Isolated μ candidate p_T>25 GeV and |η|<2.5, with E_T^{miss}>20 GeV and E_T^{miss}+m_T>60 GeV
 - \geq 1 R=0.4 jet with p_T>25 GeV and |η|<2.5
 - 1 R=1.0 jet with p_T>300 GeV and |η|<2.0
 - Must also have $1^{st} k_T$ splitting scale $(d_{12})^{0.5} > 40$ GeV and $m_{iet} > 100$ GeV
- 2. Resolved analysis:
 - Same lepton requirements
 - 3 or 4 R=0.4 jets with p_T >25 GeV and $|\eta|$ <2.5
 - If only 3 jets, one must have m_{iet}>60 GeV

Require at least one b-tagged jet

• Limited by SM ttbar background

ATLAS Boosted I+jets Search (II)

Backgrounds estimated from MC

• Show both the boosted analysis, and all summed together

ATLAS Boosted I+jets Search (III)

ATLAS Progress in Boosted Top Quark Physics

Boosted WW/WZ/ZZ Search

New analysis searching for boosted W/Z's

- Search for heavy object decaying to vector boson pair
- Look for pairs of fully hadronically-decaying Ws and Zs
- Differences with top-tagging:
 - Use energy-correlation variable D₂
 - Mass window ±15 GeV around M_W and M_Z
 - Require Ntrk < 30
 - Set D₂ cut so that tag is 50% efficient

Measure backgrounds using jet mass "sidebands"

WW/WZ/ZZ Search Results (I)

Di-boson mass distributions show no evidence of resonance signal

- Use the data to set 95% CL limits
- Incorporate systematic uncertainties as Bayesian priors
- Compare with various models

WW/WZ/ZZ Search Results (II)

Observed limits consistent with expected limits

- Not sensitive to G_{KK} or HVT Z' production
- Can exclude $W' \rightarrow VV$ for $M_{W'}$ between 1.39 and 1.6 TeV
- ~20% more sensitive than lepton+jets (based on CL)

WW/WZ Search Results (III)

Similar analysis with one W boson decaying leptonically

- Use similar boosted jet selection
- Standard lepton and E_T^{miss} selection
- Can exclude HVT \rightarrow VV for $M_X < 1.25$ TeV, and $G_{KK} \rightarrow$ VV for $M_X < 1.06$ TeV

(a) $HVT \rightarrow WZ$

(b) $HVT \rightarrow WW$

Summary and Conclusions

Boosted top quarks are now becoming a standard "tagged" object

- Can measure SM production of high-p_T top quark production
- Extend searches for new phenomena up to the 2-3 TeV range
- Has taught us much about QCD jets
- Applying same strategies to detect boosted W's and Z's – competitive approach

We can look forward to increasingly sensitive searches over the coming year

"Boost" has a very significant Israeli heritage!

Backup HEPTopTagger

Backup: Di-Photon Search

Searched for new states decaying to two photons

- Clean sample, with non-photon bkgds < 10%
- Largest excess in m_{yy} seen around 750 GeV
 - About a dozen events excess, with S/B~1
 - Width appears to be about 45 GeV if interpreted as a resonance
- 3.6σ local p-value, and 2σ effect, taking into account the "lookelsewhere effect"

Backup Diboson Search

ATLAS Progress in Boosted Top Quark Physics