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Weighty Matter:
The Top Quark and Its Mass

Outline
1. What We Know About Fundamental Structure

2. The Top Quark:  Discovery & Properties

3. The Role of the Higgs Boson

4. Producing and Detecting Top Quarks

5. Measuring the Top Quark Mass

6. Summary
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Structure of Matter

 What we now learn in “high school:”
– Matter is made up of atoms

> Electron cloud
> Hard, small core - nucleus

– Discovered by Rutherford through
 α scattering off gold foil

– Held together by electromagnetic force

– Nucleus itself has structure
> Protons
> Neutrons
> Can describe all matter

– Three types of building blocks
– Electromagnetic force
– “Strong” force
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Up and Down Quarks

 Protons & neutron size about 10-15 m
– Use high-energy electrons (10-20 GeV) to

“see” into proton
> Cf., MeV energies needed to

resolve atomic structure
– Studies at Stanford in 1960’s showed

> 3 objects inside proton
> 2 charge +2/3  - “up” quarks
> 1 charge -1/3 - “down” quarks
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More Quarks!

 By 1977, we had discovered three additional
“flavours” of quarks
– Strange quark --  introduced in 1963

> Had a mass around 0.3 GeV/c2

> Decayed after about 10-6 s

– Charm quark -- detected in 1974
> Heavier (about 1.8 GeV/c2)
> Lifetime of about 10-13 s

– Bottom quark -- discovered in 1977
> Heavier still (about 4.5 GeV/c2)
> Lifetime of about 10-12 s
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And More Forces

 Heavy quark decays caused by a “weak” force
– “Standard Model” predicted 2 force carriers

> W+ and Z0 intermediate vector bosons
– UA1 and UA2 experiments

at CERN discovered
them in 1983

 Led to partially unified
picture:
– Strong force

> Bound quarks
– Electroweak force

> Electromagnetic
and weak force

– But didn’t include gravity
> Very weak, no quantum theory
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Theory Remained Incomplete
 Standard Model picture:

– Quarks come in “singlets”
or “doublets,” and interact
via electroweak force

 Was b quark a singlet?
– Production of b quarks

> Angular distribution depends on # of partners to b quark
> b quark behaved like a member of a “doublet”
> Unseen partner defined to be top/truth quark

– New quark appeared
 to be  heavy
> Mtop > 28 GeV/c2 in 1986
> Mtop > 91 GeV/c2 in 1990
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Properties of the Top
 Top quark properties unusual

– Massive fermion
> Decays before interacts with other

quarks
> Opportunity to study a “bare” quark

– Heaviest object in theory
> Most sensitive to “loops”
> Insight into generation of mass

in Standard Model

 Difficult to observe
– Need high-energy collisions
– Electron colliders limited by energy
– Hadron colliders create huge

background rate
> Creates “needle in the haystack”

problem
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Source of Mass

 Simplest theories predict quarks, leptons and
force carriers massless
– Reality is quite different

> Masses range from < 0.0005 to > 90 GeV/c2

– Explained theoretically by a “broken symmetry”
> EWK interaction mediated by massive W/Z bosons
> Requires the existence of Higgs boson

 Higgs provides a crude mechanism to give
each particle its own mass
– Higgs interacts with all particles
– Strongest interactions -> heaviest mass

 But no direct evidence for Higgs boson
– Searches imply that MH > 114 GeV/c2 at 95% CL
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Top Quark Opens Up
New Laboratory

 Top provides a broad
physics program
– Production & decay

> Cross sections
> Branching ratios
> Helicity

– Top quark mass
> Test of EWK

radiative corrections
– Single top production

> Top quark width
– New phenomena

> Rare decays
> Unusual events
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Search  and Discovery of Top

  Began in 1980’s at the Tevatron
– The problem:

> Last time we had “lots” of top quarks
was within first second of Big Bang

> We had to recreate those conditions
– Very high-energy collisions
– Very dense environment

– The solution:
> Collide protons and antiprotons

at highest energies possible (1.8 TeV)
– Fermilab Tevatron Collider

> Record collisions & sift through the data
– Collider Detector at Fermilab (CDF)
– D∅ Detector
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Fermilab and CDF

 Fermilab Tevatron
– Highest energy matter-

anti-matter collider
– 1011 p per bunch
– Collide bunches in 2

places
– Have two detectors

> CDF & D∅

 CDF Detector
– Largest particle detector in 1986
– Image each collision

> 50-300 kHz
– Keep “interesting ones”

> Only 5-10 Hz
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Top Quark Production

 Top is pair-produced in pp collisions
– Decays into W+b
– Characterize final states

based on W decay
> Lepton(e/µ)+jets (35%)
> Dileptons (5%)
> All hadronic (60%)

 Rare: at 1.96 TeV

– Created in 1 out of every 1010 collisions at Tevatron
– We successfully reconstruct maybe 1 in 20
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σ tt ≈ 6 pb
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Top Quark Search & Discovery

 Initial CDF search in 1987-88 came up empty
– Look for events with 2 W bosons + ≥1 b quark

> W decay into lepton + ν
> Evidence of second W (2 jets or another lepton+ν)

– No significant evidence of a signal
> One candidate dilepton event

– But expected 0.3 events from background
– If it existed, top quark mass > 77 GeV/c2

 Upgraded detector & accelerator in 1990-91
– New search in 1993-95
– By 1994, found “evidence” in data

> 12 collisions out of 1012

– Equivalent to looking for a coin on the moon!
> Expected to see only about 5 from other sources

PRL 64, 142 (1990)
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Typical Event in CDF
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Discovery in 1995

 Discovery came with twice the data
– Saw 65 events -- only 23 events from background
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Popular Press Had It’s Say

 Newsweek (9 May 94)
– “How Many Scientists

Does it Take to Screw in
a Quark?”

 LA Times (10 May 1994)
– “Ask No More for Whom

the Quark Quacks”

 Toronto Star (17 Jul 1994)
– “Memoirs of a Quark-

Hunting Man”

Media loves a good
story.  Just might not 
be the one you think!
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Run I Top Quark Cross Section

 Observed top in all
expected decay modes
– Combined result

had precision of
20-25%

– In good agreement
with theoretical
prediction

– Also provides a very
crude test of the
decay rates

€ 

t→W b vs X b
t→W b vs W q
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Top Quark Mass

 Measured the top quark mass
by reconstructing final state
– Combined Tevatron result

 Why is it so heavy?
– About 40 times heavier

than bottom quark
– SM says it has to do with the Higgs boson

> The Yukawa coupling of the Higgs
field is large

> Possibly indication of some other
phenomenon?

€ 

Mtop =174.3± 5.1GeV/c2
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Fermilab Run II Program

 Fermilab upgraded Tevatron
– Commissioned Main Injector

> Improved Tevatron injection
> Higher pbar production (x10)
> Increased bunches (6 to 36)

– Tevatron Improvements
> Energy: 1.8 to 1.96 TeV
> Design L of 5x1031 cm-2s-1

– Started commissioning in
March 2001
> Although a slow start

– Latest luminosity record of 1.83x1032 cm-2s-1 (6 Jan 06)
– Have delivered 1.5 fb-1
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CDF II Detector

 Upgraded CDF Detector
– Tracking

> New 7-layer SVX system
> Central Outer Tracker

– Calorimetry
> New Sci-fi Plug Calorimeter
> New readout and electronics

– Improved muon coverage
> Scintillator trigger paddles
> Completed CMX

– New trigger and readout system
> SVX impact trigger commissioned
> Goal is to trigger and readout efficiently at >50 Hz
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Silicon Tracking Systems

 7-8 layer tracker
– SVX II (5 layers)
– L00 (on beampipe)
– ISL (extends η coverage)

 SVT tracking trigger
– L1: charged particle trigger
– L2: identify secondary vertices

 System working very well
– Challenge is managing radiation

environment
– Original detector expected to

survive next two years
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Data Taking Progress

 Started Run II Officially in July 2002
– Detector/Collider running well
– Challenges have been:

> Tevatron start-up
> Silicon operation
> Understanding calorimeter

energy calibrations
> Maintaining high data-

taking efficiency (>80%)

Calendar Collected Total
Year (fb-1) (fb-1)
2002 0.12 0.12
2003 0.17 0.29
2004 0.35 0.64
2005 0.65 1.29
2006 0.8 2.1
2007 1 3
2008 >1 >4
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Reconstructing Top Quarks

 Technique developed in Run I
– Require electron or muon candidate with Et > 20 GeV
– Require neutrino (Missing Et > 20 GeV)
– Require at least 4 jets

> At least 3 with Et > 15 GeV & 4th with Et > 8 GeV
> Identify jets b-tagged with secondary vertex

 Reconstruct both top quarks
– Identify b quark by “tag”

> Find 2 other jets that appear
to come from W decay

> Assume missing energy
comes from neutrino

– Require combination to
conserve energy-momentum
> Gives a measured “top mass”
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Extracting a Top Mass

 Use “best mass” from each event
– Sensitive to top mass
– Interpret data as combination of

> Signal events
> Background events

– Primarily W+jets
– Perform likelihood fit to sum of

two components

 Check the procedure
– Use “pseudo-experiments”

> Vary reconstruction techniques
> Vary MC assumptions
> Check for biases
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Systematic Uncertainties
 Largest source is jet energy scale

– Absolute calibration of calorimeter
– Jet fragmentation effects

 QCD effects in production & decay
– Initial state and final state radiation

 MC modeling
– Modeling of

partons in
proton

– Variations in
matrix element
calculation

– Non-perturbative
effects

Source Uncertainty
(GeV)

Jet scale 2.5

B jet modelling 0.6
Final state radiation 0.6
Background shape 0.5
Method uncertainties 0.5
Initial state radiation 0.4
MC modelling 0.4
Parton distributions 0.3
Total (w/o JES) 1.3
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Taming of Jet Energy
Uncertainty

 To reduce the largest uncertainty
– Use W boson decay to two jets

> Expect to see mass of 80.4 GeV/c2

> Introduce another variable
– JES -- the difference between the observed and

assumed jet energy scale
– units are the average uncertainty of 3%

– Fit this to the observed Mjj distribution

– Perform simultaneous fit to Mtop & JES

 Works!
– Reduce top quark mass uncertainty
– Turned largest systematic uncertainty

into a statistical uncertainty
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First Run II Mtop Measurement

 Have now applied this technique
– Used first 318 pb-1 of data

> Collected Sep 2002 to Jun 2004
> Provides 165 lepton+jet candidates

– For dijet calibration study
> Divide into 4 subsamples

– 2 b-tags
– 1 b-tag “tight jet” sample
– 1 b-tag “loose jet” sample
– No tag sample

> Plot all dijet combinations
– For top mass reconstruction

> Require all candidates to satisfy
kinematic fit --> 128 candidates

> Divide into same 4 subsamples
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Jet Energy Scale Measurement

 Look at fit to dijet
masses first
– Assume top quark

mass is 178 GeV/c2

– Provides a “check” of
the jet energy scale

 Conclude that jet energy
scale is correctly
modelled
– Uncertainty has been

reduced by 20%

€ 

JES = −0.10−0.80
+0.78 σ c
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Top Mass Measurement

 Have 165 events in  318 pb-1 sample
– Subdivided into 4 subsamples
– Estimate background

of 27±3 events

 Likelihood fit:

– Most precision
comes from:
> Tight tags
> Double tags

€ 

Mtop =173.5−3.6
+3.7(stat)

±1.3 (syst) GeV/c2
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Statistical Uncertainty

 Likelihood contours show the
expected correlation
– Use delta-likelihood to quote

uncertainties
– Scale by 1.04 to obtain 68%

confidence intervals

 The expected uncertainty is
consistent with expectation
– Could suggest we were

perhaps “fortunate” in the
uncertainty
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Checks on Measurement
 Performed many checks

– Most of analysis
dedicated to this

 Used different technique
– Matrix element method

(DLM)
– Get similar result, with

somewhat larger
uncertainty

 Checked robustness
– Varied selection, MC

modelling, assumptions
used to constrain JES

– No significant effects

  Checked procedure with
“pseudo-experiments”

– Verified statistical
precision

– Verified that method
internally consistent

 Did analysis “blind”
– Didn’t look at data till

final systematics
estimated

– Result was very robust
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Implications of Measurement
 Gives us the most precise measurement

– Can combine with all other measurements (CDF & D∅)
– Use information about JES

in other analyses
> First in situ measurement of

absolute jet energy scale in
hadron collider

> Validates much of our MC
work on calorimeter, jet
clustering models, nature
of underlying event

 Single most important outcome:
– More data will result in greater

precision
– Dominant systematic uncertainty

now statistical

€ 

Mtop =173.5−3.8
+3.9 GeV/c2
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Combined Mtop Measurement
 D∅ and CDF have collaborated

to produce combined Mtop
– D∅ preliminary measurement

– Combine all 8 different Mtop
measurements

– Statistically uncorrelated
> Statistical uncertainty is

reduced to 1.7 GeV/c2

> Systematic uncertainties highly
correlated

> Largest are
– JES:  2.0 GeV/c2

– Signal model:  0.9 GeV/c2

– Bkgd model:  0.9 GeV/c2

hep-ex/0507091, 21 Jul 05

€ 

Mtop =169.5 ± 4.7 GeV/c2 (DZero)

€ 

Mtop =172.7 ± 2.9 GeV/c2 (Tevatron)
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What About the Higgs?

 W and top quark mass
constrain Higgs
 Can predict the Higgs

mass

 Constrain Higgs mass
– MH< 186 GeV/c2 at

95% Conf. Level
– Know exactly what we

should see in higher
energy collisions if
Standard Model
correct

€ 

MH = 91−32
+45 GeV/c2
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Implications for non-SM Models

 Supersymmetry is perhaps
most popular SM extension
– Unknown mass scales
– Particle mass hierarchy not

well understood

 Current Mtop suggests a
lower SUSY mass scale
– But many caveats
– Don’t believe we learn very

much because of the SUSY
uncertainties

 Take-home message
– Higher precision

measurements are sensitive
to non-SM physics

Heinemeyer & Weiglein, 
Private Communication, June 2005
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What Have We Learned?

 Top quark behaves as expected
– Produced at the expected rate
– Decays like expected
– But statistical precision on many properties poor

> Have many more measurements to make
– Width (or its lifetime)
– What is produced along with it

 Top quark mass is HARD to measure
– Difficult to reconstruct events
– Low statistics
– Battle with what we don’t know

> Systematic uncertainties can be limiting
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Progress at LHC

 LHC construction still
on track for 2007
– 14 TeV proton collider
– Two experiments:

ATLAS & CMS

 Detector construction
proceeding well
– Now funding and

people limited!
– ATLAS and CMS still

scheduled for cosmic
ray running in April
2007

– Detectors starting to
take shape
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ATLAS Under Construction

Technicians
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Summary

 Made progress finding the truth about top
– Fermilab Tevatron has now produced

world’s largest sample of top quark events
> No surprises so far -- looks like

Standard Model top quark production
– Top mass studies are tough

> Making real progress

> Now analyzing 1 fb-1 of data

 Higgs -- if it exists -- appears to be relatively light
– Might be just around the “corner”€ 

Mtop =173.5−3.8
+3.9 GeV/c2

€ 

MH >114 GeV/c2 and MH <186 GeV/c2


