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Introduction

g Systematic uncertainties play key role in physics
measurements
– Few formal definitions exist, much “oral tradition”
– “Know” they are different from statistical uncertainties

Random Uncertainties
q Arise from stochastic

fluctuations
q Uncorrelated with previous

measurements
q Well-developed theory
q Examples

q  measurement resolution
q  finite statistics
q  random variations in system

Systematic Uncertainties
q Due to uncertainties in the

apparatus or model
q Usually correlated with

previous measurements
q Limited theoretical framework
q Examples

q calibrations uncertainties
q detector acceptance
q poorly-known theoretical

parameters
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Literature Summary

g Increasing literature on the topic of “systematics”
 A representative list:
– R.D.Cousins & V.L. Highland, NIM A320, 331 (1992).
– C. Guinti, Phys. Rev. D 59 (1999), 113009.
– G. Feldman, “Multiple measurements and parameters in the unified approach,”

presented at the FNAL workshop on Confidence Limits (Mar 2000).
– R. J. Barlow, “Systematic Errors, Fact and Fiction,” hep-ex/0207026 (Jun 2002), and

several other presentations in the Durham conference.
– G. Zech,  “Frequentist and Bayesian Confidence Limits,” Eur. Phys. J, C4:12 (2002).
– R. J. Barlow, “Asymmetric Systematic Errors,” hep-ph/0306138 (June 2003).
– A. G. Kim et al., “Effects of Systematic Uncertainties on the Determination of

Cosmological Parameters,” astro-ph/0304509 (April 2003).
– J. Conrad et al., “Including Systematic Uncertainties in Confidence Interval

Construction for Poisson Statistics,” Phys. Rev. D 67 (2003), 012002
– G.C.Hill, “Comment on “Including Systematic Uncertainties in Confidence Interval

Construction for Poisson Statistics”,” Phys. Rev. D 67 (2003), 118101.
– G. Punzi, “Including Systematic Uncertainties in Confidence Limits”, CDF Note in

preparation.
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I. Case Study #1: W Boson Cross
Section

g Rate of W boson production
– Count candidates Ns+Nb

– Estimate background
Nb & signal efficiency e

– Measurement reported as

– Uncertainties are
† 

s = Nc - Nb( ) (e L)

† 

s = 2.64 ± 0.01 (stat)
                     ± 0.18 (syst) nb

† 

s stat @ s 0 1/Nc

s syst @ s 0 dNb /Nb( )2
+ de /e( )2

+ dL /L( )2
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Definitions are Relative

g Efficiency uncertainty estimated using Z
boson decays
– Count up number of Z candidates NZ

cand

> Can identify using charged tracks
> Count up number reconstructed NZ

recon

– Redefine uncertainties

–
† 

e =
NZ

recon

NZ
cand fi de @

NZ
recon NZ

cand - NZ
recon( )

NZ
cand

† 

s stat @ s 0 1/Nc + de /e( )2

s syst @ s 0 dNb /Nb( )2
+ dL /L( )2

Lessons:
• Some systematic uncertainties

are really “random”
• Good to know this

• Uncorrelated
• Know how they scale

• May wish to redefine
• Call these 

        “CLASS 1” Systematics
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Case Study #2: Background
Uncertainty

g Look at same W cross section analysis
– Estimate of Nb dominated by QCD backgrounds

> Candidate event
– Have non-isolated leptons
– Less missing energy

> Assume that isolation
and MET uncorrelated

> Have to estimate the
uncertainty on Nb

QCD

– No direct measurement
has been made to verify the model

– Estimates using Monte Carlo modelling have large
uncertainties
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Estimation of Uncertainty

g Fundamentally different class of uncertainty
– Assumed a model for data interpretation
– Uncertainty in Nb

QCD depends on accuracy of model
– Use “informed judgment” to place bounds on one’s

ignorance
> Vary the model assumption to estimate robustness
> Compare with other methods of estimation

g Difficult to quantify in consistent manner
– Largest possible variation?

> Asymmetric?
– Estimate a “1 s” interval?
– Take

Lessons:
• Some systematic uncertainties

reflect ignorance of one’s data
• Cannot be constrained by 

observations
• Call these 

        “CLASS 2” Systematics

† 

s ª
D

12
?
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Case Study #3:  Boomerang CMB
Analysis

g Boomerang is one of several
CMB probes
– Mapped CMB anisoptropy
– Data constrain models of the

early universe

g Analysis chain:
– Produce a power spectrum for

the CMB spatial anisotropy
> Remove instrumental effects through a complex

signal processing algorithm
– Interpret data in context of many models with

unknown parameters
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Incorporation of Model
Uncertainties

g Power spectrum extraction
includes all instrumental
effects
– Effective size of beam
– Variations in data-taking

procedures

g Use these data to extract
7 cosmological parameters
– Take Bayesian approach

> Family of theoretical models defined by 7 parameters
> Define a 6-D grid (6.4M points), and calculate likelihood

function for each
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Marginalize Posterior Probabilities

g Perform a Bayesian
“averaging” over a grid
of parameter values
– Marginalize w.r.t. the

other parameters
> NB: instrumental

uncertainies included
in approximate manner

– Chose various priors
in the parameters

g Comments:
– Purely Bayesian analysis with

no frequentist analogue
– Provides path for inclusion of

additional data (eg. WMAP)

Lessons:
• Some systematic uncertainties

reflect paradigm uncertainties
• No relevant concept of a 

frequentist ensemble
• Call these 

        “CLASS 3” Systematics
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Proposed Taxonomy for
Systematic Uncertainties

g Three “classes” of systematic uncertainties
– Uncertainties that can be constrained by ancillary

measurements
– Uncertainties arising from model assumptions or

problems with the data that are poorly understood
– Uncertainties in the underlying models

g Estimation of Class 1 uncertainties straightforward
– Class 2 and 3 uncertainties present unique challenges
– In many cases, have nothing to do with statistical

uncertainties
> Driven by our desire to make inferences from the data

using specific models
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II.  Estimation Techniques

g No formal guidance on how to define a systematic
uncertainty
– Can identify a possible source of uncertainty
– Many different approaches to estimate their magnitude

> Determine maximum effect D

g General rule:
– Maintain consistency with definition of

statistical intervals
– Field is pretty glued to 68% confidence intervals
– Recommend attempting to reflect that in magnitudes of

systematic uncertainties
– Avoid tendency to be “conservative”

† 

s =
D
2

?

s =
D

12
?
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Estimate of Background
Uncertainty in Case Study #2

g Look at correlation of Isolation and MET
– Background estimate

increases as isolation
“cut” is raised

– Difficult to measure or
accurately model

> Background comes
primarily from very
rare jet events with
unusual properties

> Very model-dependent

g Assume a systematic uncertainty representing
the observed variation
– Authors argue this is a “conservative” choice
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Cross-Checks Vs Systematics

g R. Barlow makes the point in Durham
– A cross-check for robustness is not an invitation to

introduce a systematic uncertainty
> Most cross-checks confirm that interval or limit is robust,

–  They are usually not designed to measure a systematic
uncertainty

g More generally, a systematic uncertainty should
– Be based on a hypothesis or model with clearly stated

assumptions
– Be estimated using a well-defined methodology
– Be introduced a posteriori only when all else has failed
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III.  Statistics of Systematic
Uncertainties

g Goal has been to incorporate systematic uncertainties
into measurements in coherent manner
– Increasing awareness of need for consistent practice

> Frequentists:  interval estimation increasingly sophisticated
– Neyman construction, ordering strategies, coverage properties

> Bayesians: understanding of priors and use of posteriors
– Objective vs subjective approaches, marginalization/conditioning

– Systematic uncertainties threaten to dominate as precision
and sensitivity of experiments increase

g There are a number of approaches widely used
– Summarize and give a few examples
– Place it in context of traditional statistical concepts
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Formal Statement of the Problem

g Have a set of observations xi, i=1,n
– Associated probability distribution function (pdf) and

likelihood function

> Depends on unknown random parameter q
> Have some additional uncertainty in pdf

– Introduce a second unknown parameter l

g In some cases, one can identify statistic yj that
provides information about l

– Can treat l as a “nuisance parameter”

  

† 

p xi |q( ) fi L q( ) = p xi |q( )
i’

  

† 

L q,l( ) = p xi |q,l( )
i’

  

† 

L q,l( ) = p xi, y j |q,l( )i, j’
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Bayesian Approach

g Identify a prior p(l) for the “nuisance parameter” l
– Typically, parametrize as either a Gaussian pdf or a flat

distribution within a range (“tophat”)
– Can then define Bayesian posterior

– Can marginalize over possible values of l
> Use marginalized posterior to set Bayesian credibility

intervals, estimate parameters, etc.

g Theoretically straightforward ….
– Issues come down to choice of priors for both q, l

> No widely-adopted single choice
> Results have to be reported and compared carefully to

ensure consistent treatment

  

† 

L q,l( ) p l( ) dq dl
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Frequentist Approach

g Start with a pdf for data
– In principle, this would describe frequency

distributions of data in multi-dimensional space
– Challenge is take account of nuisance parameter
– Consider a toy model

> Parameter s is Gaussian
width for n

g Likelihood function (x=10, y=5)
– Shows the correlation
– Effect of unknown n

† 

p xi,y j |q,l( )

† 

p x, y | m,n( ) = G x - m + n( ),1( )G y -n,s( )
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Formal Methods to Eliminate
Nuisance Parameters

g Number of formal methods exist to eliminate
nuisance parameters
– Of limited applicability given the restrictions
– Our “toy example” is one such case

> Replace x with t=x-y and parameter n with

> Factorized pdf and can now integrate over n’
> Note that pdf for m has larger width, as expected

– In practice, one often loses information using this
technique

† 

v'≡ n + ms2

1+ s2

fi p t, y | m,n '( ) = G t - m, 1+ s2( )G y -n '+ ts2

1+ s2 , s
1+ s2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 
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Alternative Techniques for
Treating Nuisance Parameters

g Project Neyman volumes onto parameter of
interest
– “Conservative interval”
– Typically over-covers,

possibly badly

g Choose best estimate of
nuisance parameter
– Known as “profile method”
– Coverage properties

 require definition of ensemble
– Can possible under-cover when parameters strongly

correlated
> Feldman-Cousins intervals tend to over-cover slightly

(private communication)

From G. Zech
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Example:  Solar Neutrino Global
Analysis

g Many experiments have measured solar neutrino flux
– Gallex, SuperKamiokande, SNO, Homestake, SAGE, etc.
– Standard Solar Model (SSM) describes n spectrum
– Numerous “global analyses” that synthesize these

g Fogli et al. have detailed one such analysis
– 81 observables from these experiments
– Characterize systematic uncertainties through 31 parameters

> 12 describing SSM spectrum
> 11 (SK) and 7 (SNO) systematic uncertainties

g Perform a c2 analysis
– Look at c2 to set limits on parameters

Hep-ph/0206162, 18 Jun 2002
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Formulation of c2

g In formulating c2, linearize effects of the systematic
uncertainties on data and theory comparison

> Uncertainties un for each observable
– Introduce “random” pull xk for each systematic

> Coefficients ck
n to parameterize effect on nth observable

> Minimize c2 with respect to xk

> Look at contours of equal D c2

† 

c pull
2 ≡ min x{ }

Rn
exp t - Rn

theor - (cn
kxk )Â

un

Ê 

Ë 

Á 
Á 
Á 
Á Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ ˜ 

n=1

N

Â

2

+ xk
2

k=1

K

Â

È 

Î 

Í 
Í 
Í 
Í 
Í 

˘ 

˚ 
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Solar Neutrino Results

g Can look at “pulls” at c2

minimum
– Have reasonable distribution
– Demonstrates consistency of

model with the various
measurements

– Can also separate
> Agreement with experiments
> Agreement with systematic

uncertainties



PHYSTAT2003 24

Pull Distributions for Systematics

g Pull distributions for xk
also informative
– Unreasonably small variations
– Estimates are globally too

conservative?
– Choice of central values

affected by data
> Note this is NOT a

blind analysis

g But it gives us some
confidence that intervals
are realistic
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Typical Solar Neutrino Contours

g Can look at probability
contours
– Assume standard c2 form
– Probably very small

probability contours have
relatively large
uncertainties
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Hybrid Techniques

g A popular technique (Cousins-Highland) does an
“averaging” of the pdf
– Assume a pdf for nuisance parameter g(l)
– “Average” the pdf for data x

– Argue this approximates an ensemble where
> Each measurement uses an apparatus that differs in

parameter l
– The pdf g(l) describes the frequency distribution

> Resulting distribution for x reflects variations in l

g Intuitively appealing
– But fundamentally a Bayesian approach
– Coverage is not well-defined

† 

pCH x |q( ) ≡ p x |q,l( )Ú g l( ) dl

See, for example, J. Conrad et al.
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Summary

g HEP & Astrophysics becoming increasingly
“systematic” about systematics
– Recommend classification to facilitate understanding

> Creates more consistent framework for definitions
> Better indicates where to improve experiments

– Avoid some of the common analysis mistakes
> Make consistent estimation of uncertainties
> Don’t confuse cross-checks with systematic uncertainties

g Systematics naturally treated in Bayesian framework
– Choice of priors still somewhat challenging

g Frequentist treatments are less well-understood
– Challenge to avoid loss of information
– Approximate methods exist,  but probably leave the “true

frequentist” unsatisfied


