The Mysteries of the Top Quark

The Search for "Truth"

- 1. How we Understand Matter
- 2. Building Blocks and the Glue
- 3. High Energy Collisions
- 4. Search for New Matter
- 5. Discovery of Truth
- 6. What Next?

St Mary's University Department of Physics and Astronomy 7 March 2003

Pekka K. Sinervo, F.R.S.C. Professor of Physics and Vice-Dean, Academic

The CAP

As Scientists,

- We face the demands of a fast moving, technologically advanced society
- We are concerned for the development and ultimate use of pure and applied science
- The global community neccesitates our involvement in government, in industry, in education

As Physicists,

- We need to keep informed of the latest developments
- We must be involved in opening our fascinating world to the youth of Canada
- It is vital that we communicate with the public
- It is essential that we have the ear of the government

The CAP Fulfills this Role!

The Building Blocks of Our World

Go back to High School:

Matter is made up of atoms

- Electron cloud
- Hard, small core
 - Protons
 - Neutrons
- Can describe all matter
 - Just three types of building blocks

α

Electrons

Protons

Neutrons

Nucleus

Discovered by Lord Rutherford

- Scattered α radiation off gold foil
- The "mortar:"
 - Electromagnetic force
 - Nuclear ("strong") force

Ze⁻

1960 Quark Picture Gets More Complex

High-energy collisions produced other "elementary particles"

Introduced "strange" quark Decayed after about 10⁻⁶ s Had a charge of -1/3

> 3 Quark Model: Explained over 100 elementary particles

Led to new theory for "forces"

Mediated by force carriers

- EM force Photon
- Strong force Gluon
- Gravity Graviton
- Weak force Intermediate Vector Boson

Discovery of Charm

Discovered another family of particles in 1974

- Had to introduce 4th quark "charm"
- Mass of about 2 protons
- Lifetime of a few x 10⁻¹³ s

• First observed as a quark-antiquark

- Charmonium (a la positronium)
- Lifetime implies it decays
 - via the "weak" force

Discovery of Beauty

Lederman et al. discovered "mass bump"

- Collided 400 GeV protons on nucleus
- Produced events with μ pairs
- Had to consist of quark-antiquark combination

Christened: "beauty" or "bottom"

FIG. 3. (a) Measured dimuon production cross sections as a function of the invariant mass of the muon pair. The solid line is the continuum fit outlined in the text. The equal-sign-dimuon cross section is also shown. (b) The same cross sections as in (a) with the smooth exponential continuum fit subtracted in order to reveal the 9-10-GeV region in more detail.

7

Theory Became the "Standard Model"

Predicted 2 weak force carriers

- Observed in 1983 at CERN
- Great triumph for theory

Detailed studies in 1980's led to two predictions

- A 6th quark "truth" or "top"
- Another particle "Higgs" boson

Why Should Truth Exist?

Standard Model picture:

 Quarks come in singlets or pairs, and interact via weak force

 V_{cs}

\//+``

С

Production of b quarks

$$e^+e^- \rightarrow bb$$

- Showed that b quark behaved like a member of a "doublet"
- By definition, partner was the t quark
- New quark was heavy (> 20 GeV/c²)

Began work in 1986 with about 450 other colleagues in CDF

- The problem:
 - Last time nature created top quarks was in first second of Big Bang
 - We had to recreate those conditions
 - Very high-energy collisions
 - Very dense environment

The solution:

- Collide protons and antiprotons at highest energies possible (1.8 TeV)
- Record collisions & sift through the data

Mimics

T ~ 10¹⁵ K

Fermilab TeVatron Collider

6 km proton synchotron

- Accelerated protons to 0.9 TeV
- Ditto for anti-protons
- About 10¹¹ protons/bunch

What To Do with the Collisions?

CDF collaboration designed and built instrument to record collisions

- Conceptually-
 - Want to see everything that results from matter-antimatter annihilation
 - Throw away uninteresting collisions
 - Piece together what initially took place

Practically-

- Particles are very energetic
- Many particles (100's /collision)
- Collision rates are very high
 - Million collisions per second
 - Each produces about 200 kBytes
 - Only about 1/100,000 "interesting"

Collider Detector at Fermilab

CDF is a US \$250M instrument

- Collaboration of about 450 people
- Involves 40 institutions:
 - US, Canada, Italy, Japan, Germany, Korea, Taiwan, Russia

More on Detector

Detector designed to

- "Image" products of a collision
- Record both charged and neutral particles
- Select about 1 in 100,000 collisions in real-time

Canadian Team

Have a team of 14 people

- 4 professors, 2 postdocs
- 8 graduate students
- Lots of technical resources

Involved in designing, building and operating detector

- Much of our effort involved in physics analysis of data
- Need to develop advanced instrumentation
- High performance computer systems at Toronto and Fermilab

How Do We Find a Top Quark

Top quarks are pair-produced

- Come in matter-antimatter "pairs"
- Decay immediately into W⁺b

- Results in very unusual signature
 - But very rare!
 - About 1 every 10 billion collisions
 - Can be easily fooled!

Typical Event!

Of course, not so typical: Require e and v 80,000 events Add 4 jets Add "b tag"

200 events 75 events

Collected data for 4 years

- After 2 years, found in data
 - 12 collisions out of a trillion

- All very unique

What Did All this Mean?

Spent 3 months checking

- How many events could "mimic" the signal?
 - Concluded would see 5.6±0.6 events if top quark didn't exist
 - Chances of being fooled 1 in 300

At that point, had to decide:

- Did we have a discovery?
 - Hint? A Suggestion? Hope?
 Vague speculation?
- Published a 61 pg PRD in Sep 1994
 - "Evidence for Top Quark Production..."
- *But:*
 - Other collaboration working at Tevatron (D0) couldn't confirm
 - We weren't convinced!
 - Continued to take data

What Does Such a Paper Look Like?

PHYSICAL REVIEW D

VOLUME 50, NUMBER 5

1 SEPTEMBER 1994

ARTICLES

Evidence for top quark production in $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV

Evidence for top quark production in *B*₀ collisions at √s = 1.8 refs.
F. Abe,^{1,9} M. G. Albrow,² S. R. Amendola,^{2,9} D. Amide,^{1,6} J. Antos,¹⁰ C. Anway-Wiese,⁴
G. Badet,¹⁰ M. W. Bailey, ¹¹ J. Baurkann,⁶ F. Bedarshar,¹⁰ A. Batraton,²⁰ M. Brazes,¹⁰ B. A. Barratt,¹⁰
B. Battalini,²¹ G. Bauer,¹¹ T. Baumann,⁶ F. Bedarshar,²⁰ A. Batraton,²¹ A. Bertors,²¹ B. A. Barratt,¹⁰
B. Battalini,²¹ G. Bauer,¹¹ T. Baumann,⁶ F. Bedarshar,²⁰ A. Behrends,² S. Belforte,² G. Bellettini,²
J. Bellinger,¹¹ D. Berginni,²¹ J. Bentoloch,¹¹ J. Bensinger,² D. Bentol,²¹ T. Boulos,²¹ G. Brandenburg,⁹
E. Buckley-Geer,²¹ H. S. Budd,²¹ K. Burkett,¹⁰ G. Busetto,²¹ C. Bavetto,¹² T. Boulos,¹⁰ G. Brandenburg,¹¹
C. Blocker,²¹ A. Bodde,²¹ K. Burkett,¹⁰ G. Busetto,²¹ C. Bardel,¹¹ T. Boulos,¹¹ F. Cruelli,¹³
C. Campbell,¹⁰ A. Caner,¹¹ W. Cartifher,¹¹ D. Cartismith,¹⁴ A. Gattor,²¹ K. Cartismith,¹⁴ A. Gattor,²¹ K. Cartismith,¹⁴ A. Gattor,²¹ K. Cartismith,¹⁴ J. Caner,²¹ D. Carnier,¹⁴ D. Bounn,¹⁴ K. Burkett,¹⁴ J. D. Cunningham,²
Danitals,¹⁵ P. Dolongh, ¹⁵ D. Delehamps,¹⁵ D. Dell Agnello,²¹ M. Dell'Onso,²¹ L. Denortier,²⁴ B. Denby,²⁴ M. Denkson,²⁴ J. E. Etias, R. Elly,¹⁴ E. Engelle, J. F. 'S. Eng.¹ D. Erreeta,¹⁵ J. D. Cunningham,²
Cangliardi,²⁴ S. Gateotti,²⁴ M. Galtinaro,²⁶ A. F. Garfinkel,¹⁵ S. Gere,¹ D. W. Gerdes,¹⁶ P. J. Hartal,¹¹ J. Fordioma, ¹⁴ H. Frisch,² A. F. Garfinkel,²⁵ S. Greer,² D. W. Gerdes,¹⁶ P. Kamat,¹⁶ H. Hartas,¹⁵ S. A. Hauger,² J. Hauser,¹ C. Hawk,²⁷ J. Heinrich,²¹ D. Humman,²¹ K. Hauser,¹⁶ H. Hartas,¹⁵ S. A. Hauger,² J. Hauser,¹ C. Hawk,²¹ H. Huffman,²¹ S. Huratal,¹⁴
M. Hartas,¹⁵ S. A. Hauger,² J. Hauser,¹ C. Hawk,²¹ H. Huffman,²¹ S. Hartal,²¹ H. Huffman,²¹ S. Hartal,¹⁴ H. Hollowa,¹⁰ A. Holischer,¹⁵ N. Beng,²¹ H. Huf

0556-2821/94/50(5)/2966(61)/\$06.00

Visitors

50 2966 © 1994 The American Physical Society

And Don't Forget the Institutions

2967 EVIDENCE FOR TOP QUARK PRODUCTION IN pp 50 N. Wainer,⁷ R. C. Walker,²⁵ G. Wang,²³ J. Wang,⁵ M. J. Wang,²⁸ Q. F. Wang,²⁶ A. Warburton,¹¹ G. Watts,²⁵ T. Watts,²⁷ R. Webb,³⁰ C. Wendt,³³ H. Wenzel,¹⁴ W. C. Wester III,¹⁴ T. Westhusing,¹⁰ A. B. Wicklund,¹ R. Wilkinson,²¹ H. H. Williams,²¹ P. Wilson,⁵ B. L. Winer,⁵ J. Wolinski,³⁰ D. Y. Wu,¹⁶ X. Wu,²³ J. Wyss,²⁰ A. Yagil,⁷ W. Yao,¹⁴ K. Yasuoka,³¹ Y. Ye,¹¹ G. P. Yeh,⁷ P. Yeh,²⁴ M. Yin,⁶ J. Yoh,⁷ T. Yoshida,¹⁹ D. Yovanovitch,⁷ I. Yu,³⁴ J. C. Yun,⁷ A. Zanetti,²³ F. Zetti,²³ L. Zhang,³³ S. Zhang,¹⁵ W. Zhang,²¹ and S. Zucchelli³ (CDF Collaboration) ¹Argonne National Laboratory, Argonne, Illinois 60439 ²Brandeis University, Waltham, Massachusetts 02254 ³Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40126 Bologna, Italy ⁴University of California at Los Angeles, Los Angeles, California 90024 ⁵University of Chicago, Chicago, Illinois 60637 ⁶Duke University, Durham, North Carolina 27708 ⁷Fermi National Accelerator Laboratory, Batavia, Illinois 60510 ⁸Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy 9 Harvard University, Cambridge, Massachusetts 02138 10 University of Illinois, Urbana, Illinois 61801 ¹¹Institute of Particle Physics, McGill University, Montreal, Canada H3A 2T8 and University of Toronto, Toronto, Canada M5S 1A7 ¹²The Johns Hopkins University, Baltimore, Maryland 21218 13 National Laboratory for High Energy Physics (KEK), Tsukuba, Ibaraki 305, Japan ¹⁴Lawrence Berkeley Laboratory, Berkeley, California 94720 ¹⁵Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 16 University of Michigan, Ann Arbor, Michigan 48109 ¹⁷Michigan State University, East Lansing, Michigan 48824 ¹⁸University of New Mexico, Albuquerque, New Mexico 87131 ¹⁹Osaka City University, Osaka 588, Japan ²⁰Universita di Padova, Instituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy ²¹University of Pennsylvania, Philadelphia, Pennsylvania 19104 ²²University of Pittsburgh, Pittsburgh, Pennsylvania 15260 ²³Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, Italy ²⁴Purdue University, West Lafayette, Indiana 47907 ²⁵University of Rochester, Rochester, New York 14627 ²⁶Rockefeller University, New York, New York 10021 27 Rutgers University, Piscataway, New Jersey 08854 ¹³ Academia Sinica, Taiwan 11529, Republic of China
 ¹⁹ Superconducting Super Collider Laboratory, Dallas, Texas 75237
 ¹⁰ Texas A&M University, College Station, Texas 77843 ³¹University of Tsukuba, Tsukuba, Ibaraki 305, Japan ³²Tufts University, Medford, Massachusetts 02155 33 University of Wisconsin, Madison, Wisconsin 53706 34 Yale University, New Haven, Connecticut 06511 (Received 25 April 1994) We present the results of a search for the top quark in 19.3 pb⁻¹ of $\overline{p}p$ collisions at $\sqrt{s} = 1.8$ TeV. The data were collected at the Fermilab Tevatron collection using the Collider Detector at Fermilab (CDF). The search includes standard model $t\bar{t}$ decays to final states $ev\bar{v}$, $e\mu v\bar{v}$, and $\mu\mu v\bar{v}$ as well as e + v + jetsor $\mu + \nu + j$ ets. In the $(e,\mu) + \nu + j$ ets channel we search for b quarks from t decays via secondary vertex identification and via semileptonic decays of the b and cascade c quarks. In the dilepton final states we find two events with a background of $0.56^{+0.25}_{-0.13}$ events. In the $e, \mu + \nu + j$ ets channel with a b identified via a secondary vertex, we find six events with a background of 2.3 ± 0.3 . With a b identified via a semileptonic decay, we find seven events with a background of 3.1 ± 0.3 . The secondary vertex and semileptonic-decay samples have three events in common. The probability that the observed yield is consistent with the background is estimated to be 0.26%. The statistics are too limited to firmly establish the existence of the top quark; however, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. We present several cross-checks. Some support this hypothesis; others do not. Under the assumption that the excess yield over background is due to $t\bar{t}$, constrained fitting on a subset of the events yields a mass of $174\pm10^{+12}_{-12}$ GeV/c² for the top quark. The $t\bar{t}$ cross section, using this top quark mass to compute the acceptance, is measured to be $13.9^{+6.1}_{-4.4}$ pb. PACS number(s): 14.65.Ha, 13.85.Ni, 13.85.Ok

Popular Press Had it's Say

Newsweek (9 May 94)

 "How Many Scientists Does it Take to Screw in a Quark?"

📕 LA Times (10 May 1994)

• "Ask No More for Whom the Quark Quacks"

Toronto Star (17 Jul 1994)

• *"Memoirs of a Quark-Hunting Man"*

Next Steps in Search

Continued to collect more data

- In year, had tripled the sample
 - Had 66 events, with 23 background
 - Chance of being fooled 1 in million
- Claimed a "Discovery"

Ended with 65 "gold" events

Have now published over 25 papers on these 65 events!

- Top quark mass 174±5 GeV/c²
- Decays always "weakly"

b

Properties of the Top Quark

Have seen the top quark decay to all expected final states

- Measured decay rates
- Measured production properties
- Measured its mass

Our Picture of the Standard Model

Summarize our "world view"

- Elementary building blocks
- Forces that act as the "glue"

Many Questions Remain:Why 6 quarks?Why 6 leptons?

•Why the masses?

• And still missing the "Higgs" boson

Search for "Truth" Continues

CDF now CDF II

- Sequel collecting data now
- Improved detector & collider
 - Have almost doubled the sample now
 - Get 10 times more data in next 2 years!

Have ambitious goals

 Precision measurement of W boson and top quark masses

26

Large Hadron Collider at CERN

Collide protons together

- 14 TeV total energy (7 x Fermilab!)
- Over billion collisions/second
 - Veritable top factory (1 Hz)
 - Aimed at nabbing the Higgs

Canadian ATLAS Effort

Contributed to the LHC

• Series of power systems & magnets

CDN Components of ATLAS

- Hadron Endcap & Cryogenic Feedthroughs
- Electronics
- Forward Calorimeter
- Software Development

Toronto ATLAS **Effort**

Just finished building part of Forward Calorimeter

- Basement of McLennan Physics
- Took two years of effort in clean room

Building 4 modules900,000 Tu slugs

- Copper matrix
- 5-tons each

Summary

We have learned much about nature through studies of top

- First clear picture of "free" quark
- Properties confirm Standard Model
 - But leaves many questions open
 - What causes mass?
 - Why so many different particles?
 - What causes matter anti-matter asymmetry?
 - What makes up the rest of the mass in the universe?

But nature gives up its secrets reluctantly!

- Experiments challenging, with long timeframes
- Much yet to learn -- look for the first LHC results in 2008!

