Thoughts on Jet Corrections in Top Quark Decays

Pekka K. Sinervo University of Toronto

Outline:

- 1. List of some issues regarding jets
- 2. Figures of merit
- 3. Eg: Underlying Event and Multiple Interactions
- 4. "Cone" corrections
- 5. Priorities for Future Work

Collaborators: Wojtek Fedorko Brendan Pass Shabnaz Pashapour Jean-Francois Arguin

1

List of Issues To Consider

- Maximize:
 - Energy resolution (and mass resolution)
 - Parton-jet matching efficiency

Minimize:

- Uncertainty due to energy scale
 - Using in-situ absolute calibration (Z decays)
 - ✤ Gamma-jet balancing

- Calorimeter inhomogeneities

- Central-wall-plug scales
- Cracks

Effects associated with definition of jet

- Underlying event
- Multiple interactions
- Out-of-cone energy (fragmentation & showering)
 - Connecting in-situ calibration with top quark events

Figures of Merit

- Need to define quantitative measures
 - W mass resolution
 - Top mass resolution
 - Intrinsic resolution
 - Resolution arising from combinatorial effects
 - Parton-jet matching efficiency
 - Size of systematic effects
 - Calorimeter energy scale
 - Out-of-cone corrections
 - ✤ UE and MI corrections
 - Simulation of detector
 - Sensitivity to top quark kinematics

Unique Aspects of Top Jets

- Low E_T scale
 - Light quark jets have ~30 GeV
 - B jets have ~50 GeV
- Large number in a given event
 - Require at least
 4 jets for lepton+jet
 channel
 - Additional jets from ISR and FSR
- Physics issues
 - W daughters
 - Colour flow
 - B jets

Eg: Underlying Event Studies

VELUT AEVO

Have performed Run I study on Run II data

- Look at dijet events and energy at 90° from jet axis
- Count primary vertices using SVX/COT info

Has some issues:

- Is this CORRECT UE?
 - Rises with sqrt(s)?
 - Some model-dependence?
- Calorimeter threshold effects need further study?

Cone Size Effects

- Are we using correct cone size?
 - Fedorko et al. (CDF 6360) looked at
 - W mass resolution
 - ✤ 2-jet and 4-jet event reconstruction officionary

Studied fully simulated events

- Selected lepton + missing Et
 - Require > 3 jets with different Et cu
- Clustered jets with different R
 - Looked for jets matched with partons
 - Used cluster cone size for matching
- Worried about W daughters coalescing
 - Turns out W \textbf{P}_{T} not high enough for this to be a significant effect

Cone Size Conclusions

Observations:

- R=0.35 or R=0.4 optimal for efficiency
- No optimal R for W mass resolution

Conclusions:

- Use small cone size for event classification
- Use alternate strategy for optimizing mass resolution

Fragmentation Effects

Out-of-cone corrections large

- Look at jets from W decay (HERWIG)
- Use R=0.4, trace partons from W-> qq'
 - Count total number and number out of cone
 - See large fluctuations of particles out of cone
 - Note that it is difficult to uniquely associate partons with a given jet -- look at total W system

Energy Flow Out-of-Cone

- Energy flow key issue
 - Mean out-of-cone fraction is stable
 - Fluctuations are quite large
- Led us to look at the features of jets where out-of-cone energy is large
 - Select jets with fraction out-of-cone >60%

Typical Calorimeter Plot

Conclusion: Challenge pattern recognition algorithms

University of Toronto Physics 10

More Jet Complications

- Out-of-cone corrections will depend on fragmentation model
 - Can constrain models using QCD events
 - ✤ Measure dN/dz, jet shapes, etc.
 - Also look at b jets in semi-leptonic decays

FSR in W decays is also an issue

- Will have to calibrate this against real data
 - Use observed number of 3rd jets as a x-check in Run I -- very crude!
- Make sure models reproduce 3rd jet properties from LEP, QCD hard scatter events

Outstanding Issues

- Physics effects are important
 - QCD evolution of W jets differs from QCD jets
 - Colour flow makes it difficult to treat jets as independent objects
 - Have to quantify our uncertainty

Calibration of this will rely heavily on MC

- Need to constrain fragmentation model
- Measure effects of FSR quantitatively
- B jets present own problems
 - Different energy scale and colour effects
 - Can we use tagged jets in semileptonic decays?

Summary

- How well do we need to understand jets?
 - Physics effects may dominate uncertainty
 - Not clear that we can treat jets independently
 - ✤ Jet energy corrections vs inter-jet separation?
- How do we properly use in situ energy calibration?
 - Could be quite accurate, but extrapolation to top quark decays will create uncertainties
- How do we verify that simulation is actually working?
 - Need careful cross-checking and constant validation
 - ✤ eg., see currently quarks in OBSP?!?