Systematic Uncertainties: Principle and Practice

Outline

- **1.** Introduction to Systematic Uncertainties
- 2. Taxonomy and Case Studies
- **3.** Issues Around Systematics
- 4. The Statistics of Systematics
- **5.** Summary

Pekka K. Sinervo,F.R.S.C. Rosi & Max Varon Visiting Professor Weizmann Institute of Science & Department of Physics University of Toronto

1

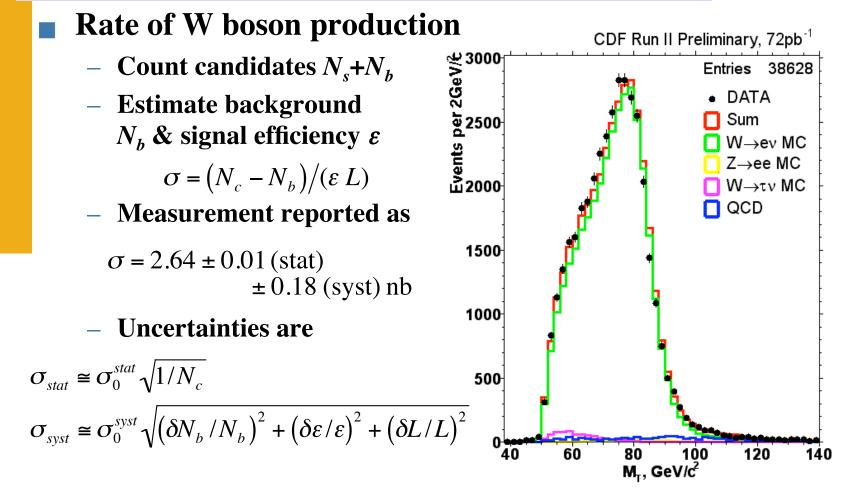
Introduction

- Systematic uncertainties play key role in physics measurements
 - Few formal definitions exist, much "oral tradition"
 - "Know" they are different from statistical uncertainties

Random Uncertainties

- Arise from stochastic fluctuations
- Uncorrelated with previous measurements
- □ Well-developed theory
- □ Examples
 - measurement resolution
 - **i** finite statistics
 - **random variations in system**

Systematic Uncertainties


- Due to uncertainties in the apparatus or model
- Usually correlated with previous measurements
- □ Limited theoretical framework
- Examples
 - **calibrations uncertainties**
 - detector acceptance
 - poorly-known theoretical parameters

Literature Summary

Increasing literature on the topic of "systematics" A representative list:

- R.D.Cousins & V.L. Highland, NIM A320, 331 (1992).
- C. Guinti, Phys. Rev. D **59** (1999), 113009.
- G. Feldman, "Multiple measurements and parameters in the unified approach," presented at the FNAL workshop on Confidence Limits (Mar 2000).
- R. J. Barlow, "Systematic Errors, Fact and Fiction," hep-ex/0207026 (Jun 2002), and several other presentations in the Durham conference.
- G. Zech, "Frequentist and Bayesian Confidence Limits," Eur. Phys. J, C4:12 (2002).
- R. J. Barlow, "Asymmetric Systematic Errors," hep-ph/0306138 (June 2003).
- A. G. Kim et al., "Effects of Systematic Uncertainties on the Determination of Cosmological Parameters," astro-ph/0304509 (April 2003).
- J. Conrad et al., "Including Systematic Uncertainties in Confidence Interval Construction for Poisson Statistics," Phys. Rev. D 67 (2003), 012002
- G.C.Hill, "Comment on "Including Systematic Uncertainties in Confidence Interval Construction for Poisson Statistics"," Phys. Rev. D 67 (2003), 118101.
- G. Punzi, "Including Systematic Uncertainties in Confidence Limits", CDF Note in preparation.

I. Case Study #1: W Boson Cross Section

Definitions are Relative

Efficiency uncertainty estimated using Z boson decays

- Count up number of Z candidates N_Z^{cand}
 - > Can identify using charged tracks

> Count up number reconstructed N_Z^{recon}

$$\varepsilon = \frac{N_Z^{recon}}{N_Z^{cand}} \Rightarrow \delta \varepsilon \approx \sqrt{\frac{N_Z^{recon} \left(N_Z^{cand} - N_Z^{recon}\right)}{N_Z^{cand}}}$$

- Redefine uncertainties
$$\sigma_{stat} \approx \sigma_0 \sqrt{1/N_c + \left(\delta \varepsilon / \varepsilon\right)^2}$$

$$\sigma_{syst} \cong \sigma_0 \sqrt{\left(\frac{\delta N_b}{N_b}^2 + \left(\frac{\delta L}{L}\right)^2\right)^2}$$

Lessons:

• Some systematic uncertainties are really "random"

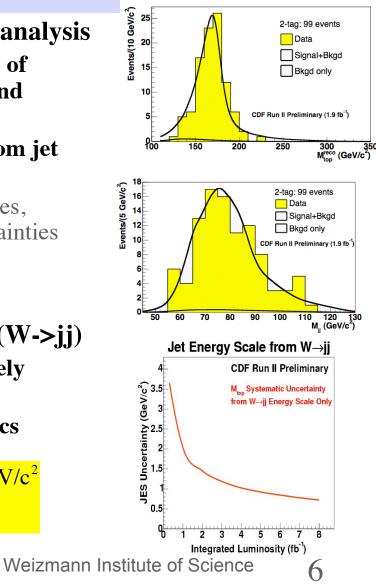
e⁻

 e^+

- Good to know this
 - Uncorrelated
 - Know how they scale
- May wish to redefine
- Call these

"CLASS 1" Systematics

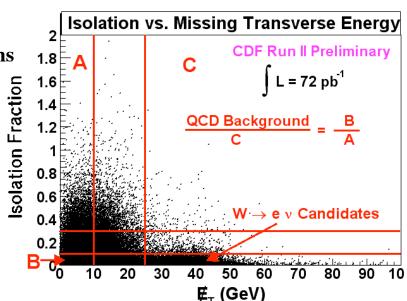
Top Mass Good Example


Top mass uncertainty in template analysis

- Statistical uncertainty from shape of reconstructed mass distribution and statistics of sample
- Systematic uncertainty coming from jet energy scale (JES)
 - Determined by calibration studies, dominated by modelling uncertainties
 - > 5% systematic uncertainty

Latest techniques determine JES uncertainty from dijet mass peak (W->jj)

- Turn JES uncertainty into a largely statistical one
- Introduce other smaller systematics


 $M_{top} = 171.8 \pm 1.9 (\text{stat} + \text{JES}) \pm 1.0 (\text{syst}) \text{ GeV/c}^2$ = 171.9 ± 2.1 GeV/c²

Case Study #2: Background Uncertainty

Look at same W cross section analysis

- Estimate of N_b dominated by QCD backgrounds
 - > Candidate event
 - Have non-isolated leptons
 - Less missing energy
 - Assume that isolation and MET uncorrelated
 - > Have to estimate the uncertainty on N_b^{QCD}
- No direct measurement has been made to verify the model
- Estimates using Monte Carlo modelling have large uncertainties

Estimation of Uncertainty

Fundamentally different class of uncertainty

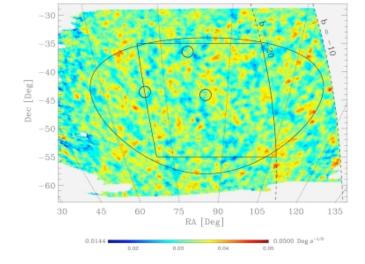
- Assumed a model for data interpretation
- Uncertainty in N_b^{QCD} depends on accuracy of model
- Use "informed judgment" to place bounds on one's ignorance
 - > Vary the model assumption to estimate robustness
 - Compare with other methods of estimation

Difficult to quantify in consistent manner

– Largest possible variation?

> Asymmetric?

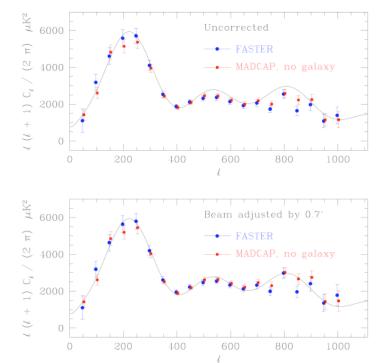
– Estimate a "1 σ" interval?


- Take
$$\sigma \approx \frac{\Delta}{\sqrt{12}}$$
?

Lessons:

- Some systematic uncertainties reflect ignorance of one's data
- Cannot be constrained by observations
- Call these
 "CLASS 2" Systematics

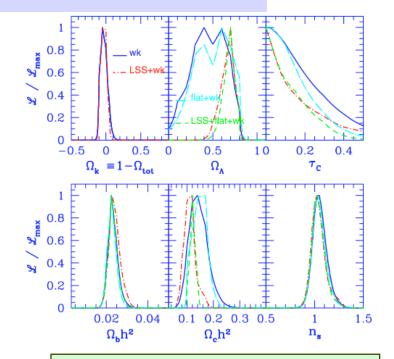
Case Study #3: Boomerang CMB Analysis


- Boomerang is one of several CMB probes
 - Mapped CMB anisoptropy
 - Data constrain models of the early universe
- Analysis chain:
 - Produce a power spectrum for the CMB spatial anisotropy

- > Remove instrumental effects through a complex signal processing algorithm
- Interpret data in context of many models with unknown parameters

Incorporation of Model Uncertainties

- Power spectrum extraction includes all instrumental effects
 - Effective size of beam
 - Variations in data-taking procedures
- Use these data to extract7 cosmological parameters
 - Take Bayesian approach
 - > Family of theoretical models defined by 7 parameters
 - > Define a 6-D grid (6.4M points), and calculate likelihood function for each



Marginalize Posterior Probabilities

- Perform a Bayesian
 "averaging" over a grid of parameter values
 - Marginalize w.r.t. the other parameters
 - > NB: instrumental uncertainies included in approximate manner
 - Chose various priors in the parameters

Comments:

- Purely Bayesian analysis with no frequentist analogue
- Provides path for inclusion of additional data (eg. WMAP)

Lessons:

- Some systematic uncertainties
 reflect paradigm uncertainties
- No relevant concept of a frequentist ensemble
- Call these
 "CLASS 3" Systematics

Proposed Taxonomy for Systematic Uncertainties

- Three "classes" of systematic uncertainties
 - Uncertainties that can be constrained by ancillary measurements
 - Uncertainties arising from model assumptions or problems with the data that are poorly understood
 - Uncertainties in the underlying models
- Estimation of Class 1 uncertainties straightforward
 - Class 2 and 3 uncertainties present unique challenges
 - In many cases, have nothing to do with statistical uncertainties
 - Driven by our desire to make inferences from the data using specific models

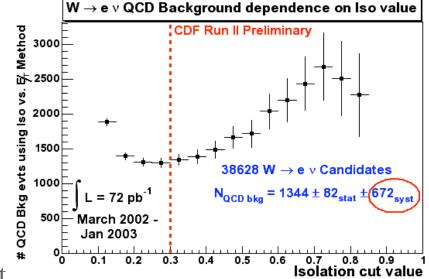
II. Estimation Techniques

- No formal guidance on how to define a systematic uncertainty
 - Can identify a possible source of uncertainty
 - Many different approaches to estimate their magnitude
 - > Determine maximum effect Δ

General rule:

 Maintain consistency with definition of statistical intervals

$$\sigma = \frac{\Delta}{\sqrt{12}}?$$


 $\sigma = \frac{\Delta}{2}?$

- Field is pretty glued to 68% confidence intervals
- Recommend attempting to reflect that in magnitudes of systematic uncertainties
- Avoid tendency to be "conservative"

Estimate of Background Uncertainty in Case Study #2

Look at correlation of Isolation and MET

- Background estimate increases as isolation "cut" is raised
- Difficult to measure or accurately model
 - Background comes primarily from very rare jet events with unusual properties
 - > Very model-dependent

Assume a systematic uncertainty representing the observed variation

Authors argue this is a "conservative" choice

Cross-Checks Vs Systematics

R. Barlow makes the point in Durham(PhysStat02)

- A cross-check for robustness is not an invitation to introduce a systematic uncertainty
 - > Most cross-checks confirm that interval or limit is robust,
 - They are usually not designed to measure a systematic uncertainty

More generally, a systematic uncertainty should

- Be based on a hypothesis or model with clearly stated assumptions
- Be estimated using a well-defined methodology
- Be introduced *a posteriori* only when all else has failed

III. Statistics of Systematic Uncertainties

- Goal has been to incorporate systematic uncertainties into measurements in coherent manner
 - Increasing awareness of need for consistent practice
 - > Frequentists: interval estimation increasingly sophisticated
 - Neyman construction, ordering strategies, coverage properties
 - > Bayesians: understanding of priors and use of posteriors
 - Objective vs subjective approaches, marginalization/conditioning
 - Systematic uncertainties threaten to dominate as precision and sensitivity of experiments increase

There are a number of approaches widely used

- Summarize and give a few examples
- Place it in context of traditional statistical concepts

Formal Statement of the Problem

- Have a set of observations *x_i*, *i=1*,*n*
 - Associated probability distribution function (pdf) and likelihood function $p(x_i | \theta) \Rightarrow \mathcal{L}(\theta) = \prod_i p(x_i | \theta)$
 - > Depends on unknown random parameter θ
 - > Have some additional uncertainty in pdf
 - Introduce a second unknown parameter λ

$$\mathcal{L}(\theta,\lambda) = \prod_{i} p(x_i \mid \theta,\lambda)$$

In some cases, one can identify statistic y_j that provides information about λ

$$\mathcal{L}(\theta, \lambda) = \prod_{i,j} p(x_i, y_j \mid \theta, \lambda)$$

- Can treat λ as a "nuisance parameter"

Bayesian Approach

- **Identify a prior** $\pi(\lambda)$ for the "nuisance parameter" λ
 - Typically, parametrize as either a Gaussian pdf or a flat distribution within a range ("tophat")
 - Can then define Bayesian posterior

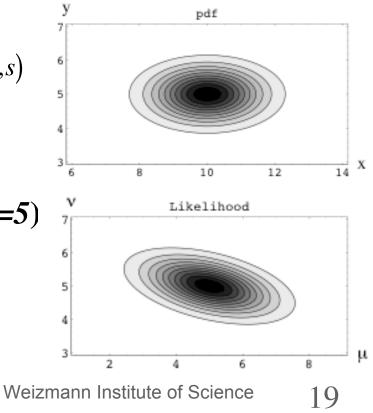
 $\mathcal{L}(heta,\lambda) \, \pi(\lambda) \, d heta \, d\lambda$

- Can marginalize over possible values of λ
 - > Use marginalized posterior to set Bayesian credibility intervals, estimate parameters, etc.

Theoretically straightforward

- Issues come down to choice of priors for both θ , λ
 - > No widely-adopted single choice
 - Results have to be reported and compared carefully to ensure consistent treatment

Frequentist Approach


- **Start with a pdf for data** $p(x_i, y_j | \theta, \lambda)$
 - In principle, this would describe frequency distributions of data in multi-dimensional space
 - Challenge is take account of nuisance parameter
 - Consider a toy model

$$p(x, y \mid \mu, \nu) = G(x - (\mu + \nu), 1)G(y - \nu, s)$$

Parameter s is Gaussian
 width for v

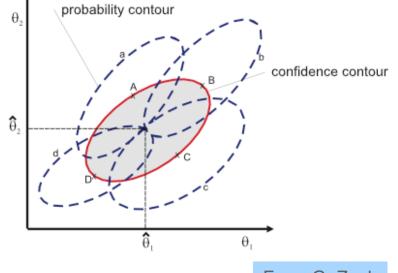
Likelihood function (*x=10*, *y=5*)

- Shows the correlation
- Effect of unknown ν

Formal Methods to Eliminate Nuisance Parameters

- Number of formal methods exist to eliminate nuisance parameters
 - Of limited applicability given the restrictions
 - Our "toy example" is one such case
 - > Replace x with t=x-y and parameter v with

$$v' \equiv v + \frac{\mu s^2}{1+s^2}$$


$$\Rightarrow p(t, y \mid \mu, v') = G(t - \mu, \sqrt{1 + s^2})G(y - v' + \frac{ts^2}{1 + s^2}, \frac{s}{\sqrt{1 + s^2}})$$

- > Factorized pdf and can now integrate over v'
- > Note that pdf for μ has larger width, as expected
- In practice, one often loses information using this technique

Alternative Techniques for Treating Nuisance Parameters

- Project Neyman volumes onto parameter of interest
 - "Conservative interval"
 - Typically over-covers, possibly badly
- Choose best estimate of nuisance parameter
 - Known as "profile method"
 - Coverage properties require definition of ensemble
 - Can possible under-cover when parameters strongly correlated
 - Feldman-Cousins intervals tend to over-cover slightly (private communication)

From G. Zech

Example: Solar Neutrino Global Analysis

- Many experiments have measured solar neutrino flux
 - Gallex, SuperKamiokande, SNO, Homestake, SAGE, etc.
 - Standard Solar Model (SSM) describes v spectrum
 - Numerous "global analyses" that synthesize these

Fogli et al. have detailed one such analysis

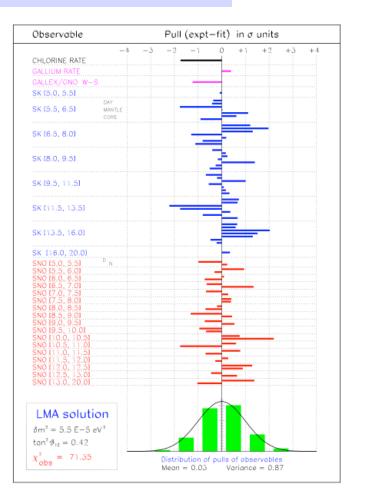
- 81 observables from these experiments
- Characterize systematic uncertainties through 31 parameters
 - > 12 describing SSM spectrum
 - > 11 (SK) and 7 (SNO) systematic uncertainties
- Perform a χ² analysis
 - Look at χ^2 to set limits on parameters

Hep-ph/0206162, 18 Jun 2002

Formulation of χ^2

In formulating χ^2 , linearize effects of the systematic uncertainties on data and theory comparison

$$\chi_{pull}^{2} = \min_{\{\xi\}} \left[\sum_{n=1}^{N} \left(\frac{R_{n}^{\exp t} - R_{n}^{theor} - \sum_{n=1}^{N} (c_{n}^{k} \xi_{k})}{u_{n}} \right)^{2} + \sum_{k=1}^{K} \xi_{k}^{2} \right]$$


> Uncertainties u_n for each observable

– Introduce "random" pull ξ_k for each systematic

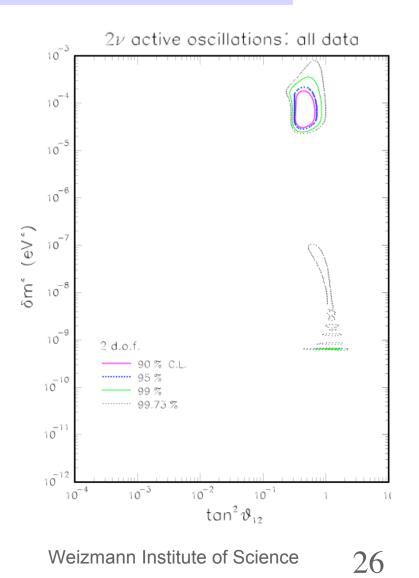
- > Coefficients c_k^n to parameterize effect on *nth* observable
- > Minimize χ^2 with respect to ξ_k
- > Look at contours of equal $\Delta \chi^2$

Solar Neutrino Results

- Can look at "pulls" at χ^2 minimum
 - Have reasonable distribution
 - Demonstrates consistency of model with the various measurements
 - Can also separate
 - > Agreement with experiments
 - Agreement with systematic uncertainties

Pull Distributions for Systematics

Pull distributions for ξ_k also informative


- Unreasonably small variations
- Estimates are globally too conservative?
- Choice of central values affected by data
 - Note this is NOT a blind analysis
- But it gives us some confidence that intervals are realistic

Systematics	Pulls	(σ)	for	LMA	solu	tior	1
		-4	-3 -	2 -1	0 +1	+2 ·	+3 +
S11	-0.05						
S33	+0						
S34	+0.01						
S1,14	-0.15						
S17	+0.38				•		
Luminosity	+0.04						
Z/X	+0.03						
Age	+0						
Opacity	-0.05						
Diffusion	-0.02						
CBe	-0.07						
Shep	-0.03						
8B shape	+0.17						
SK scale	+0.78				-		
SK resol.	+0.61				-		
SK offset	+0.44				•		
SK [5.0, 5.5]	-0.03						
SK [5.5, 6.5]	-0.26				•		
SK [6.5, 8.0]	+0.54				-		
SK [8.0, 9.5]	+0.01						
SK [9.5, 11.5]	-0.14				•		
SK [11.5, 13.5]	-0.21				•		
SK [13.5, 16.0]	+0.26				•		
SK [16.0, 20.0]	+0.01						
SNO scale	-0.15				•		
SNO resol.	-0.32				•		
SNO vertex	+0.13						
SNO n capture							
SNO n bkgd	-0.06						
SNO LE bkgd	-0.16				•		
SNO cross sec.	+0.04						
	$\chi^2_{sys} = 2.05$						

Typical Solar Neutrino Contours

Can look at probability contours

- Assume standard χ^2 form
- Probably very small probability contours have relatively large uncertainties

Hybrid Techniques

- A popular technique (Cousins-Highland) does an "averaging" of the pdf
 - Assume a pdf for nuisance parameter $g(\lambda)$
 - "Average" the pdf for data x

 $p_{\rm CH}(x \mid \theta) = \int p(x \mid \theta, \lambda) g(\lambda) \, d\lambda$

- Argue this approximates an ensemble where
 - > Each measurement uses an apparatus that differs in parameter λ
 - The pdf $g(\lambda)$ describes the frequency distribution
 - > Resulting distribution for *x* reflects variations in λ

Intuitively appealing

- See, for example, J. Conrad et al.
- But fundamentally a Bayesian approach
- Coverage is not well-defined

Summary

HEP & Astrophysics becoming increasingly "systematic" about systematics

- Recommend classification to facilitate understanding

- > Creates more consistent framework for definitions
- > Better indicates where to improve experiments

Avoid some of the common analysis mistakes

- > Make consistent estimation of uncertainties
- > Don't confuse cross-checks with systematic uncertainties

Systematics naturally treated in Bayesian framework

Choice of priors still somewhat challenging

Frequentist treatments are less well-understood

- Challenge to avoid loss of information
- Approximate methods exist, but probably leave the "true frequentist" unsatisfied