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Introduction

 Systematic uncertainties play key role in physics
measurements
– Few formal definitions exist, much “oral tradition”
– “Know” they are different from statistical uncertainties

Random Uncertainties
 Arise from stochastic

fluctuations
 Uncorrelated with previous

measurements
 Well-developed theory
 Examples

  measurement resolution
  finite statistics
  random variations in system

Systematic Uncertainties
 Due to uncertainties in the

apparatus or model
 Usually correlated with

previous measurements
 Limited theoretical framework
 Examples

 calibrations uncertainties
 detector acceptance
 poorly-known theoretical

parameters



Weizmann Institute of Science 3

Literature Summary

 Increasing literature on the topic of “systematics”
 A representative list:
– R.D.Cousins & V.L. Highland, NIM A320, 331 (1992).
– C. Guinti, Phys. Rev. D 59 (1999), 113009.
– G. Feldman, “Multiple measurements and parameters in the unified approach,”

presented at the FNAL workshop on Confidence Limits (Mar 2000).
– R. J. Barlow, “Systematic Errors, Fact and Fiction,” hep-ex/0207026 (Jun 2002), and

several other presentations in the Durham conference.
– G. Zech,  “Frequentist and Bayesian Confidence Limits,” Eur. Phys. J, C4:12 (2002).
– R. J. Barlow, “Asymmetric Systematic Errors,” hep-ph/0306138 (June 2003).
– A. G. Kim et al., “Effects of Systematic Uncertainties on the Determination of

Cosmological Parameters,” astro-ph/0304509 (April 2003).
– J. Conrad et al., “Including Systematic Uncertainties in Confidence Interval Construction

for Poisson Statistics,” Phys. Rev. D 67 (2003), 012002
– G.C.Hill, “Comment on “Including Systematic Uncertainties in Confidence Interval

Construction for Poisson Statistics”,” Phys. Rev. D 67 (2003), 118101.
– G. Punzi, “Including Systematic Uncertainties in Confidence Limits”, CDF Note in

preparation.



Weizmann Institute of Science 4

I. Case Study #1: W Boson Cross
Section

 Rate of W boson production
– Count candidates Ns+Nb

– Estimate background
Nb & signal efficiency ε

– Measurement reported as

– Uncertainties are
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Definitions are Relative

 Efficiency uncertainty estimated using Z
boson decays
– Count up number of Z candidates NZ

cand

> Can identify using charged tracks
> Count up number reconstructed NZ

recon

– Redefine uncertainties
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Lessons:
• Some systematic uncertainties

are really “random”
• Good to know this

• Uncorrelated
• Know how they scale

• May wish to redefine
• Call these 

        “CLASS 1” Systematics
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Top Mass Good Example
 Top mass uncertainty in template analysis

– Statistical uncertainty from shape of
reconstructed mass distribution and
statistics of sample

– Systematic uncertainty coming from jet
energy scale (JES)
> Determined by calibration studies,

dominated by modelling uncertainties
> 5% systematic uncertainty

 Latest techniques determine JES
uncertainty from dijet mass peak (W->jj)
–  Turn JES uncertainty into a largely

statistical one
– Introduce other smaller systematics

! 

Mtop =171.8 ±1.9(stat + JES) ±1.0 (syst) GeV/c
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2
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Case Study #2: Background
Uncertainty

 Look at same W cross section analysis
– Estimate of Nb dominated by QCD backgrounds

> Candidate event
– Have non-isolated leptons
– Less missing energy

> Assume that isolation
and MET uncorrelated

> Have to estimate the
uncertainty on Nb

QCD

– No direct measurement
has been made to verify the model

– Estimates using Monte Carlo modelling have large
uncertainties
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Estimation of Uncertainty

 Fundamentally different class of uncertainty
– Assumed a model for data interpretation
– Uncertainty in Nb

QCD depends on accuracy of model
– Use “informed judgment” to place bounds on one’s

ignorance
> Vary the model assumption to estimate robustness
> Compare with other methods of estimation

 Difficult to quantify in consistent manner
– Largest possible variation?

> Asymmetric?
– Estimate a “1 σ” interval?
– Take

Lessons:
• Some systematic uncertainties

reflect ignorance of one’s data
• Cannot be constrained by 

observations
• Call these 

        “CLASS 2” Systematics
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Case Study #3:  Boomerang CMB
Analysis

 Boomerang is one of several
CMB probes
– Mapped CMB anisoptropy
– Data constrain models of the

early universe

 Analysis chain:
– Produce a power spectrum for

the CMB spatial anisotropy
> Remove instrumental effects through a complex

signal processing algorithm
– Interpret data in context of many models with

unknown parameters
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Incorporation of Model
Uncertainties

 Power spectrum extraction
includes all instrumental
effects
– Effective size of beam
– Variations in data-taking

procedures

 Use these data to extract
7 cosmological parameters
– Take Bayesian approach

> Family of theoretical models defined by 7 parameters
> Define a 6-D grid (6.4M points), and calculate likelihood

function for each
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Marginalize Posterior Probabilities

 Perform a Bayesian
“averaging” over a grid
of parameter values
– Marginalize w.r.t. the

other parameters
> NB: instrumental

uncertainies included
in approximate manner

– Chose various priors
in the parameters

 Comments:
– Purely Bayesian analysis with

no frequentist analogue
– Provides path for inclusion of

additional data (eg. WMAP)

Lessons:
• Some systematic uncertainties

reflect paradigm uncertainties
• No relevant concept of a 

frequentist ensemble
• Call these 

        “CLASS 3” Systematics
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Proposed Taxonomy for
Systematic Uncertainties

 Three “classes” of systematic uncertainties
– Uncertainties that can be constrained by ancillary

measurements
– Uncertainties arising from model assumptions or

problems with the data that are poorly understood
– Uncertainties in the underlying models

 Estimation of Class 1 uncertainties straightforward
– Class 2 and 3 uncertainties present unique challenges
– In many cases, have nothing to do with statistical

uncertainties
> Driven by our desire to make inferences from the data

using specific models
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II.  Estimation Techniques

 No formal guidance on how to define a systematic
uncertainty
– Can identify a possible source of uncertainty
– Many different approaches to estimate their magnitude

> Determine maximum effect Δ

 General rule:
– Maintain consistency with definition of

statistical intervals
– Field is pretty glued to 68% confidence intervals
– Recommend attempting to reflect that in magnitudes of

systematic uncertainties
– Avoid tendency to be “conservative”
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Estimate of Background
Uncertainty in Case Study #2

 Look at correlation of Isolation and MET
– Background estimate

increases as isolation
“cut” is raised

– Difficult to measure or
accurately model
> Background comes

primarily from very
rare jet events with
unusual properties

> Very model-dependent

 Assume a systematic uncertainty representing
the observed variation
– Authors argue this is a “conservative” choice
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Cross-Checks Vs Systematics

 R. Barlow makes the point in Durham(PhysStat02)
– A cross-check for robustness is not an invitation to

introduce a systematic uncertainty
> Most cross-checks confirm that interval or limit is robust,

–  They are usually not designed to measure a systematic
uncertainty

 More generally, a systematic uncertainty should
– Be based on a hypothesis or model with clearly stated

assumptions
– Be estimated using a well-defined methodology
– Be introduced a posteriori only when all else has failed
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III.  Statistics of Systematic
Uncertainties

 Goal has been to incorporate systematic uncertainties
into measurements in coherent manner
– Increasing awareness of need for consistent practice

> Frequentists:  interval estimation increasingly sophisticated
– Neyman construction, ordering strategies, coverage properties

> Bayesians: understanding of priors and use of posteriors
– Objective vs subjective approaches, marginalization/conditioning

– Systematic uncertainties threaten to dominate as precision
and sensitivity of experiments increase

 There are a number of approaches widely used
– Summarize and give a few examples
– Place it in context of traditional statistical concepts
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Formal Statement of the Problem

 Have a set of observations xi, i=1,n
– Associated probability distribution function (pdf) and

likelihood function

> Depends on unknown random parameter θ
> Have some additional uncertainty in pdf

– Introduce a second unknown parameter λ

 In some cases, one can identify statistic yj that
provides information about λ

– Can treat λ as a “nuisance parameter”
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Bayesian Approach

 Identify a prior π(λ) for the “nuisance parameter” λ
– Typically, parametrize as either a Gaussian pdf or a flat

distribution within a range (“tophat”)
– Can then define Bayesian posterior

– Can marginalize over possible values of λ
> Use marginalized posterior to set Bayesian credibility

intervals, estimate parameters, etc.

 Theoretically straightforward ….
– Issues come down to choice of priors for both θ, λ

> No widely-adopted single choice
> Results have to be reported and compared carefully to

ensure consistent treatment
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Frequentist Approach

 Start with a pdf for data
– In principle, this would describe frequency

distributions of data in multi-dimensional space
– Challenge is take account of nuisance parameter
– Consider a toy model

> Parameter s is Gaussian
width for ν

 Likelihood function (x=10, y=5)
– Shows the correlation
– Effect of unknown ν

! 
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Formal Methods to Eliminate
Nuisance Parameters

 Number of formal methods exist to eliminate
nuisance parameters
– Of limited applicability given the restrictions
– Our “toy example” is one such case

> Replace x with t=x-y and parameter ν with

> Factorized pdf and can now integrate over ν’
> Note that pdf for µ has larger width, as expected

– In practice, one often loses information using this
technique
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Alternative Techniques for
Treating Nuisance Parameters

 Project Neyman volumes onto parameter of
interest
– “Conservative interval”
– Typically over-covers,

possibly badly

 Choose best estimate of
nuisance parameter
– Known as “profile method”
– Coverage properties

 require definition of ensemble
– Can possible under-cover when parameters strongly

correlated
> Feldman-Cousins intervals tend to over-cover slightly

(private communication)

From G. Zech
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Example:  Solar Neutrino Global
Analysis

 Many experiments have measured solar neutrino flux
– Gallex, SuperKamiokande, SNO, Homestake, SAGE, etc.
– Standard Solar Model (SSM) describes ν spectrum
– Numerous “global analyses” that synthesize these

 Fogli et al. have detailed one such analysis
– 81 observables from these experiments
– Characterize systematic uncertainties through 31 parameters

> 12 describing SSM spectrum
> 11 (SK) and 7 (SNO) systematic uncertainties

 Perform a χ2 analysis
– Look at χ2 to set limits on parameters

Hep-ph/0206162, 18 Jun 2002
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Formulation of χ2

 In formulating χ2, linearize effects of the systematic
uncertainties on data and theory comparison

> Uncertainties un for each observable
– Introduce “random” pull ξk for each systematic

> Coefficients ckn to parameterize effect on nth observable
> Minimize χ2 with respect to ξk
> Look at contours of equal Δ χ2
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Solar Neutrino Results

 Can look at “pulls” at χ2

minimum
– Have reasonable distribution
– Demonstrates consistency of

model with the various
measurements

– Can also separate
> Agreement with experiments
> Agreement with systematic

uncertainties
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Pull Distributions for Systematics

 Pull distributions for ξk
also informative
– Unreasonably small variations
– Estimates are globally too

conservative?
– Choice of central values

affected by data
> Note this is NOT a

blind analysis

 But it gives us some
confidence that intervals
are realistic
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Typical Solar Neutrino Contours

 Can look at probability
contours
– Assume standard χ2 form
– Probably very small

probability contours have
relatively large
uncertainties



Weizmann Institute of Science 27

Hybrid Techniques

 A popular technique (Cousins-Highland) does an
“averaging” of the pdf
– Assume a pdf for nuisance parameter g(λ)
– “Average” the pdf for data x

– Argue this approximates an ensemble where
> Each measurement uses an apparatus that differs in

parameter λ
– The pdf g(λ) describes the frequency distribution

> Resulting distribution for x reflects variations in λ

 Intuitively appealing
– But fundamentally a Bayesian approach
– Coverage is not well-defined

! 
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See, for example, J. Conrad et al.
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Summary

 HEP & Astrophysics becoming increasingly
“systematic” about systematics
– Recommend classification to facilitate understanding

> Creates more consistent framework for definitions
> Better indicates where to improve experiments

– Avoid some of the common analysis mistakes
> Make consistent estimation of uncertainties
> Don’t confuse cross-checks with systematic uncertainties

 Systematics naturally treated in Bayesian framework
– Choice of priors still somewhat challenging

 Frequentist treatments are less well-understood
– Challenge to avoid loss of information
– Approximate methods exist,  but probably leave the “true

frequentist” unsatisfied


