The Role of Calorimetry in Top Physics

Pekka Sinervo University of Toronto

Overview

- The Standard Model Top Quark
- Detecting and Reconstructing Top
- ullet Intrinsic Limitations Top mass and p_T
- Limitations and Expected Improvements

Work done in collaboration with Pierre Savard and Andrew Robinson

Standard Model Top Quark Phenomenology

Produced in collider environment

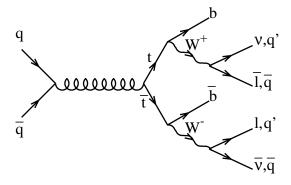
- \bullet Produced through annihilation $f\overline{f} \to t\overline{t}$
- In $p \bar{p}$ collisions at $\sqrt{s}=$ 1.8 TeV, $\sigma \sim$ 5 pb

Top quarks decay via the weak force

- Predict $\sim 100\% \ t \rightarrow W^+b$
- For heavy top $(M_{top} \gtrsim 100-120 \text{ GeV/c}^2)$, decays before it hadronises

Can be viewed as "pure" β decay

$$\Gamma_{\mathrm{top}} = \frac{G_F M_t^3}{8\sqrt{2}\pi} \left(1 - \frac{M_W^2}{M_t^2}\right)^2 \left(1 + 2\frac{M_W^2}{M_t^2}\right)$$
 $\sim 175 \; \mathrm{MeV} \; \left(\frac{M_t}{M_W}\right)^3 \sim 2 \; \mathrm{GeV}$


- Toponium doesn't have time to form
- T mesons \sim degenerate (if there was time...)
- Decay dominated by "longitudinal W^+ "

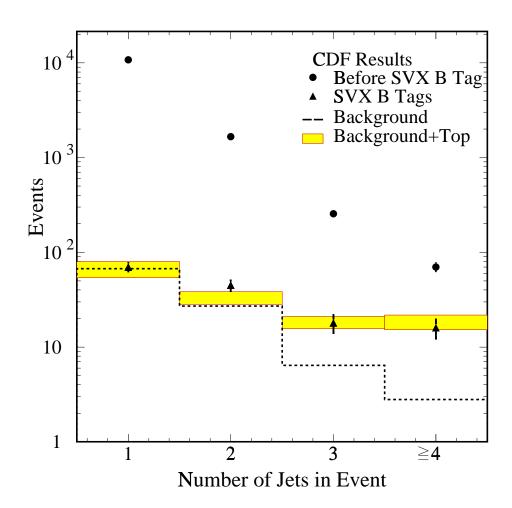
Reconstructing Top

Since top is pair-produced and β decays

• Expect to see 6 final state particles

- $t \overline{t}
 ightarrow l
 u_l +$ jets (24/81 for $l = e^-/\mu^-$)
- $t \overline{t}
 ightarrow l
 u_l l'
 u_{l'}$ (2/81 for $l = e^-/\mu^-$)
- $t\overline{t} \rightarrow \text{n jets } (36/81)$

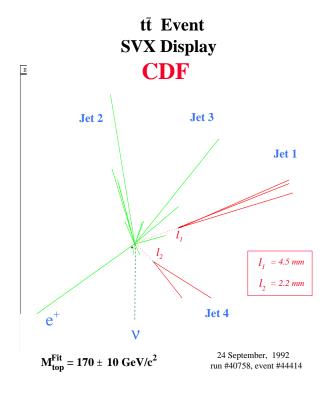
Backgrounds are large:


- Fake lepton candidates from QCD multijet events
- W+ jets production
- \Rightarrow Controlled by requiring ≥ 1 b-tagged jet

Effect of b-Tagging

Require b-tag in $W+\geq 3$ jet sample

• Expect $S/B \sim 7$



Identifying Top Decays in $p\bar{p}$ Collisions

In order to identify lepton + jets top candidates

- Search for $W \to l\nu_l$ candidate
 - Electron or muon with $p_T>20~{
 m GeV/c}$
 - Missing transverse energy $E_T > 20~{
 m GeV}$
- Search for at least one b jet
 - Most effective tool is to find a secondary vertex
- Some evidence of other W in event
 - Either two more jets or another lepton

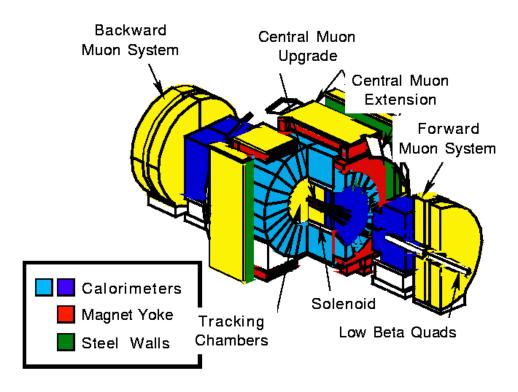
Today's Technology

Both CDF and DØ detector employ 1980's calorimetry

- CDF has a Pb-scintillator/Fe-scintillator sandwich
 - For $|\eta|>1.2$, employs PWC wire/pad readout
 - $\sigma_E \sim 0.15 \sqrt{E}$ for EM
 - $\sigma_E \sim 1.1 \sqrt{E}$ for jets
- DØ has a more uniform U-liquid Ar calorimeter
 - $\sigma_E \sim 0.07\sqrt{E} + 0.016E_0.66$ for EM
 - $\sigma_E \sim 1.15 \sqrt{E}$ for jets

Calorimetry extends to $|\eta| \sim 4$

- Region $|\eta|\lesssim 2.5$ most important for top
- ullet Missing E_T calculated over region $|\eta| < 3.6$


Will be using CDF as example in this talk

- b-tagging is more effective
- Has most complete set of top kinematic results

CDF Run I Detector

CDF Detector

- ullet Pb/Fe-scintillator for $|\eta| < 1.1$
- Pb/Fe-PWC for $1.1 < |\eta| < 4.2$

The Status of Top Today

CDF has now detected top in virtually all decay modes

- Lepton + Jets mode (for mass analysis)
 - lepton $p_T>$ 20 GeV/c and $ot\!\!E_T>$ 20 GeV
 - $_{-}~\geq$ 3 jets, $E_{T}>$ 15 GeV and $|\eta|<$ 2
 - Require 1 b-tagged jet OR a 4th jet with $E_T>15$
 - \Rightarrow 76 candidates (expect 31 \pm 7 bkg)
- Dileptons
 - 2 leptons with $p_T >$ 20 GeV/c
 - Remove Drell-Yan and Z° background
 - \Rightarrow 9 candidates (2.4 \pm 0.5 events bkg)
- All hadronic decays
 - between 5 and 8 jets $(E_T>15$ GeV and $|\eta|<2.0)$
 - $\sum E_T >$ 300 GeV + additional kinematic cuts
 - \Rightarrow Observe 187 b-tagged jets (142 \pm 11 expected bkg)

These are purest samples for top quark measurements

What are the Interesting Top Properties?

- Top Quark Production Cross Section
 - Discovery technique
 - Predicted by QCD with less uncertainties than σ_b
 - Look for single top production
- Top Quark Mass
 - SM constrains it to M_W/M_Z
 - Important consistency check of theory
- Top Quark Production and Decay Kinematics
 - p_T distribution sensitive to "new" physics
 - SM expects decay to be polarized
- Top Quark Decay Rates
 - Measured $t \to W^+b/t \to W^+q$
 - Searched for FCNC such as $t \to Z^{\circ}c$

Role of Calorimetry in Top Physics

Calorimetry plays crucial role in top quark studies

- Lepton identification
 - Principle tool for electron ID
- Neutrino detection
 - Use technique of "missing transverse energy"
- Quark → jet reconstruction
 - Need to reconstruct b quark jets for tagging
 - Have to efficiently reconstruct W o q ar q'
- Energy flow in event
 - Have to understand recoil system

Charged Lepton ID

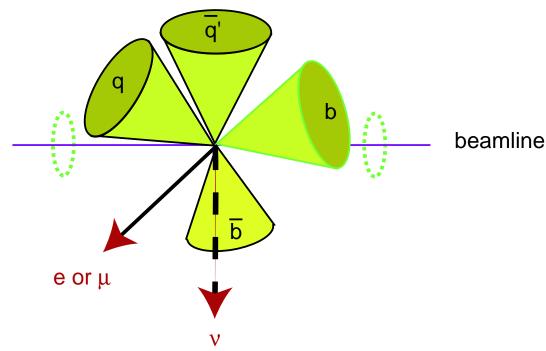
Electron ID places stringent criteria

- \bullet E_T measurement
- Shower shape discrimination (lateral and longitudinal)
- Charged track ↔ cluster match
- Can achieve efficiencies ∼ 85%
 - Rejection of $\sim 10^3$ for QCD-induced backgrounds

Criteria on calorimetry fairly stringent

- ullet Fine tower segmentation $\Delta\eta imes \Delta\phi \lesssim 0.1 imes 0.05$
 - Finer transverse segmentation for shower shape
 - Longitudinal segmentation necessary
 - * \gtrsim 2 samples
- Good resolution for energy charged track matching
 - typically $\sigma_E \sim 0.1 0.15 \sqrt{E}$ is sufficient

Used for muon ID


• Look for minimum-ionizing tracks

Neutrino Identification

Use standard definition of "missing E_T "

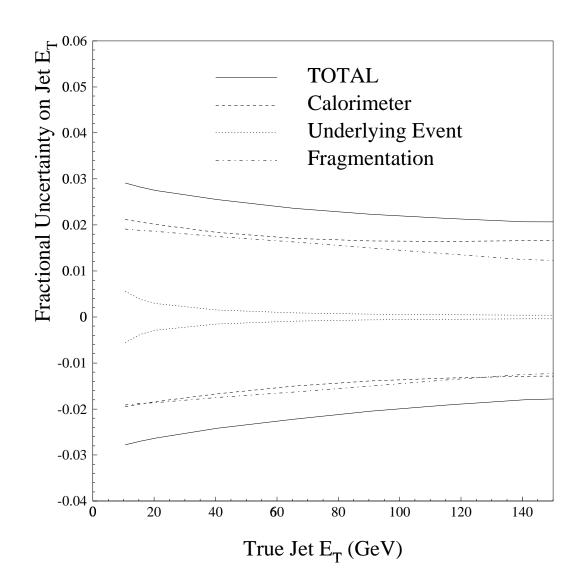
- Non-linear calorimetry response for jets
- Fluctuations in underlying event(s) (UE)
- Response to recoil system (X)
- Cracks and holes in detector

Calorimeter Response to Jets

Jets are messy objects

- High-energy parton fragments and hadronizes
 - "Core" of jet contains most energy
 - Calorimetry non-linearities, e/h,
- Have to use "clustering" algorithm
 - Use narrow cone $R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$
 - Fluctuations due to "out-of-cone" losses
 - Overlapping showers
- ullet Fluctuations coming from UE contributions
 - Mean is $\sim 1 GeV$ per steradian

Lots of extra (and missing) jets


3 35% 33% 4 50% 50% 5 11% 14% > 5 0% 2.5%	Jets	Data	$t \overline{t}$ MC
/ O O/O =10/0	4 5	50%	50%

Jet Systematics

Can measure the response in situ

- Systematics are complex mix of effects
- ullet Use dijet-balancing, Z+ jet events and MC

Putting $t\bar{t}$ Event Together

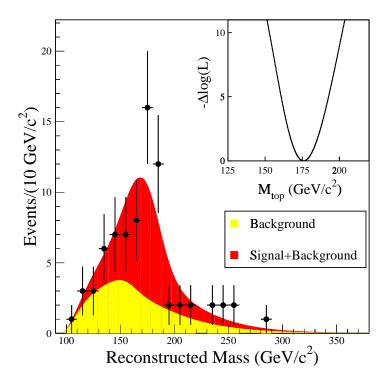
First correct for jet response

• Correct E_T using known jet corrections

$$\not\!\!E_T^{(cor)} = -\sum_{i=1}^{n_l} \vec{p_T^l} - \sum_{i=1}^{n_j} \vec{p_T^j}^{(cor)} - X^{(cor)}$$

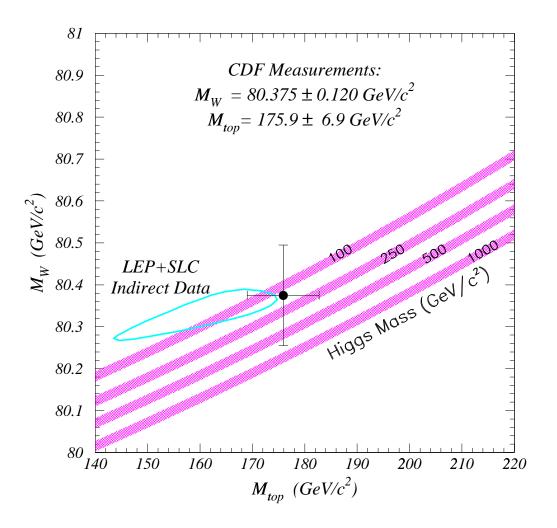
Put events together in following way

- Choose 4 leading jets
- Identify any b-jets
- Fit kinematics (masses equal, W boson mass constraint)
- ullet Select parton-jet assignment with smallest χ^2
 - This works about 40% of the time


Overall works reasonably well for single-tagged events

Top Quark Mass

Measurements now limited by systematic uncertainties


- Overall systematic uncertainty is $\sim 5 \text{ GeV/c}^2$
 - Dominated by uncertainties in soft gluon contributions and energy scale
- Run I statistics limit systematic uncertainty

The final Run I values are

$$M_{top} = 176.0 \pm 6.5 \text{ GeV c}^2 \text{ (CDF)}$$

 $M_{top} = 172.1 \pm 7.1 \text{ GeV c}^2 \text{ (DØ)}$
 $M_{top} = 174.3 \pm 5.1 \text{ GeV c}^2 \text{ (RunI)}$

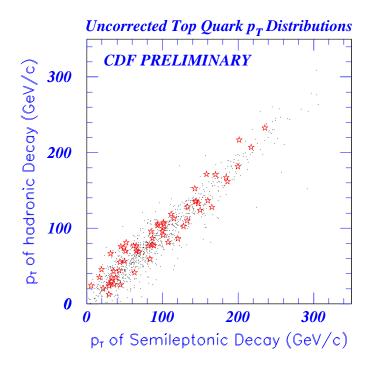
Top Quark p_T Distribution

SM predicts top quarks produced "back-to-back"

- ullet Broad p_T distribution $< p_T > \sim M_{top}/2$
- ullet p_T of t ar t system expected to be low

Statistics limit any measurement

- ullet Use data to set confidence limits on $rac{d\sigma_t}{dp_T}$
- Limited to large bins ($\Delta p_T = 75 \text{ GeV/c}$)

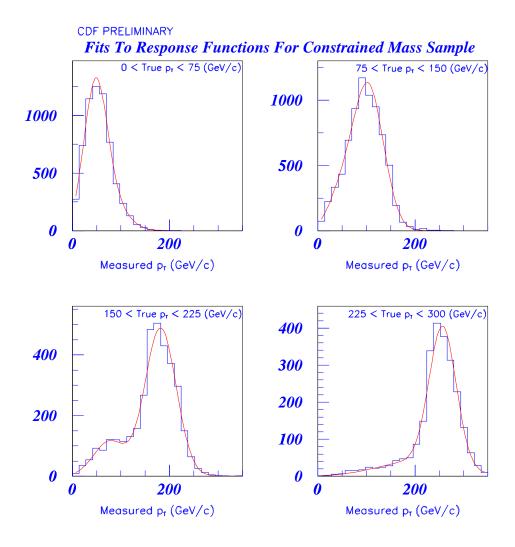

Kinematically fit event, constraining $M_{top}=175~{
m GeV/c^2}$

- Require $\chi^2 < 10$
- ⇒ Left with 61 events

Measurement of p_T

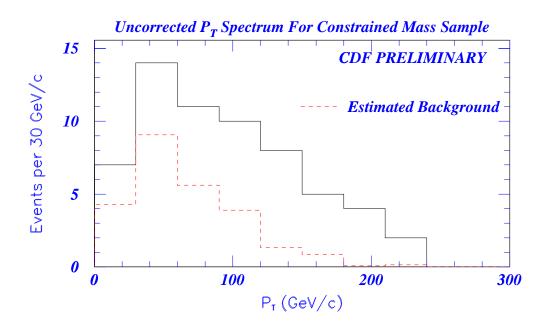
Measurements on lepton-side and jet-side are strongly correlated!

Make measurement using only jet-side top quarks


- In principle can measure $p_T(t \bar t)$ system
- Simply no resolution to do so with statistics

p_T Response Functions

Measured p_T smearing using MC/detector simulation


Use HERWIG MC and full detector model

- Most smearing arises from incorrect jet assignments
- Blame it mostly on "stupid" algorithm

Uncorrected p_T Distribution

- 61 events pass selection criteria
- Background distribution normalized to estimated rate
 - We estimate $N_{bgd}=$ 24.6 \pm 5.8 events

Resulting Fitted p_T Distribution

Perform likelihood fit to response functions and bkg shape

- Fit tagged and untagged events with different templates
- Use "bootstrap" technique to minimize assumptions about shape of p_T spectrum within each true bin
- Define

$$R_i \equiv \frac{\text{fraction in } i \text{th bin}}{\sigma_{t\bar{t}}}$$

Apply p_T -dependent acceptance correction

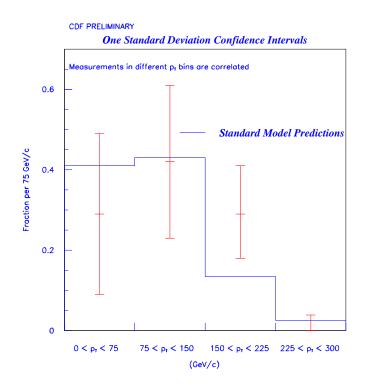
• Acceptance increases \sim 35% with p_T

$$R_1 = 0.29^{+0.18}_{-0.18}$$
 $R_2 = 0.42^{+0.18}_{-0.18}$
 $R_3 = 0.29^{+0.12}_{-0.10}$
 $R_4 = 0.000^{+0.035}_{-0.000}$

Magnitude of Systematic Uncertainties in $\ensuremath{p_T}$

Used combination of MC and data to estimate systematic uncertainties

- Largest relates to how well we "unfold" data
 - Assume standard model distribution within bin
 - "Bootstrap" removes most of the bias
- Worst case δR_i is ~ 0.06
- Uncertainties are dominated by small sample size


CDF PRELIMINARY

Syst.	δR_1	δR_2	δR_{3}	δR_{4}	$\delta(R_1+R_2)$
m_t	+0.026 -0.000	+0.00 -0.027	+0.023 -0.000	+0.000 -0.018	+0.006 -0.012
ISR	± 0.016	± 0.027	± 0.005	± 0.005	± 0.007
FSR	± 0.038	± 0.023	± 0.010	± 0.005	± 0.015
JES	+0.020	+0.037	+0.000	+0.000	+0.014
Q^2	$^{-0.028}_{\pm 0.025}$	$^{-0.006}_{\pm 0.008}$	$^{-0.008}_{\pm 0.008}$	$^{-0.003}_{\pm 0.010}$	$^{-0.000}_{\pm 0.016}$
p_T	± 0.032	± 0.045	± 0.055	± 0.016	± 0.036
Acceptance	+0.010 -0.023	+0.013 -0.012	+0.016 -0.014	+0.000 -0.000	+0.025 -0.011

Top Quark Differential Cross Section

$$R_1 + R_2 = 0.72^{+0.13}_{-0.13} (\text{stat})^{+0.06}_{-0.06} (\text{syst})$$

 $R_4 < 0.114 \text{ at } 95\% \text{ C.L.}$

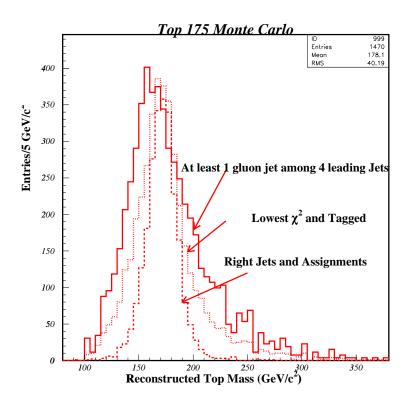
p_T Bin	Measured Fraction of Top Quarks
$0 < p_T < 75 $	$R_1 = 0.29_{-0.18}^{+0.18} (\text{stat})_{-0.08}^{+0.08} (\text{syst})$
$75 < p_T < 150 \; { m GeV/c}$	$R_2 = 0.42_{-0.18}^{+0.18} (\text{stat})_{-0.07}^{+0.05} (\text{syst})$
$150 < p_T < 225 \; { m GeV/c}$	$R_3 = 0.29_{-0.10}^{+0.12} (\text{stat})_{-0.05}^{+0.06} (\text{syst})$
$225 < p_T < 300 \text{ GeV/c}$	$R_4 = 0.000_{-0.000}^{+0.035} (\text{stat})_{-0.000}^{+0.019} (\text{syst})$

Limitations from Calorimetry

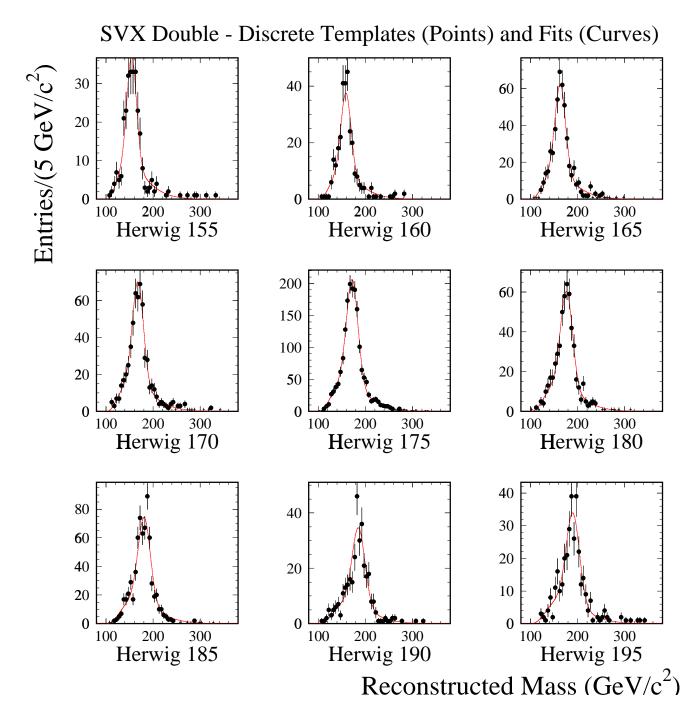
Have "stepped back" and considered limitations

- 1. Have difficulty reconstructing jet "objects"
- 2. Not able to properly reconstruct events
- 3. Intrinsic calorimeter resolution plays little role

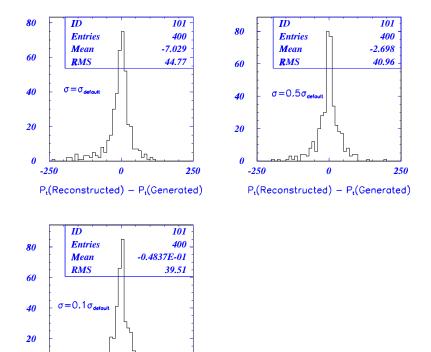
Can demonstrate using "standard" CDF simulation


- Reconstruct and identify correct partons
- Vary calorimeter response
 - Back-of-the-envelope implies $\sigma_M \sim$ 6 8 GeV/c²
 - Reality is $\sigma_M \sim$ 25 30 GeV/c²

Effects on Top Mass


Have investigated source of these resolution effects

- "Hard gluon radiation" plays pivotal role
 - Also create dominate systematic uncertainty
- Getting parton-jet assignments right next
- Intrinsic calorimeter resolution comes third


Mass Resolution of Double Tagged Events

Contributions to p_T Resolution

Top quark p_T resolution insensitive to intrinsic response

Jet resolution dominated by "hard" gluon radiation/hadronizati

ullet Can get p_T RMS to 7 GeV/c when turned off

 $P_t(Reconstructed) - P_t(Generated)$

• Increases rate of "correct" combinations by $\sim 50\%$

Summary of Kinematic Limitations

Gains have to come from improved jet/event reconstruction

- Tagging both b-jets makes significant difference
 - Loose 40 50% of data
 - OK if lots of events to begin with
- Improvements in jet algorithms
 - R = 0.4 fixed cone algorithm not perfect
 - * Need sophisticated "pattern recognition"
 - * Reduce out-of-cone corrections
 - * Reduce *UE* contribution?
 - Hard to make big improvements
- Use improved resolution to enhance kinematic constraints
 - Makes χ^2 technique more effective at selecting right combination
 - Allows one to sort out 5 and 6-jet combinations

Expected Improvements for Run II

For Run II at Tevatron

- Will have the same fundamental calorimetry
- Advantage will be in larger statistics
 - Biggest gain will come from improving reconstruction algorithm

Also can control systematics better

- ullet Systematics in M_{top} limited by gluon radiation
- Calorimetery response will continue to challenge
 - Use W o qar q' shape

Most favourable estimates give

- Jet-parton energy scales 1 − 2 GeV
- Event modelling 1 GeV

Top at the Large Hadron Collider

Top physics at the LHC looks a lot easier

- Trick is that the σL is $\times 10^4 10^5$
- Can now literally throw away $t\bar{t}$ events
 - Concentrate on events with high top p_T
 - Avoid combinatorial problems
 - High E_T jets that are more collimated

Have essentially the same problems

- Limited by large jet multiplicities
- ullet Effects of overlapping jets, UE events

Summary

Calorimetry plays crucial role in top quark physics

- Charged lepton ID
- Neutrino measurement
- Jet reconstruction

Biggest effects have to do with sorting out the physics

- Real gains will come from using data more intelligently
 - Improve jet clustering algorithms
 - Deal with combinatorial problems more effectively
 - Employ b-tagging more creatively
- Better intrinsic resolution helps (but slowly)

Certainly much to do for Run II

- Expect ×50 more data
- Much opportunity to optimize

