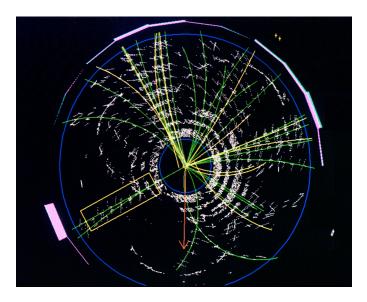
Top Quark Physics at the LHC

Outline of Lectures

- **1.** Discovery of Top Quark
- 2. Top Quark in the Standard Model
- **3. Production Mechanisms**
- 4. Precision Measurement of Top Quarks
- 5. Other Top Quark Properties
- 6. Things That We Don't Know (But Should)

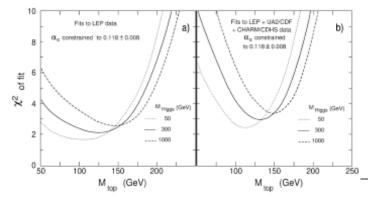
Pekka K. Sinervo, F.R.S.C. University of Toronto

1


Some Introductory Comments

- Standard approach to these sorts of lectures
 - Begin with theoretical background
 - Focus on the phenomenological issues
 - > What does theory tell us?
 - > What have we learned from measurements?
 - > What next?
- Approach here will be a little more experimental
 - Start with discovery with top, then talk about formal stuff
 - Work to develop an appreciation of what top quark production & decay looks like
 - Talk about all the stuff that you need to know
 - > But work to hide "under the carpet" the details
 - Objective is to give audience a flavour of what we will learn at the LHC by studying the top quark system

The Top Quark Revealed


- Experiments at Fermilab Tevatron
 - studying p-pbar collisions at 1.8 TeV
 - Looked at ~2x10¹² collisions
 - Searching for events with
 - > Evidence of a W boson
 - Decaying leptonically into either eve or mnm
 - > 3 or more jets
 - At least one showing evidence of a b quark decay ("b tag")
- Observed an excess of events above SM & instrumental backgrounds

- Evidence for a previously unobserved process
 - Excess of events equivalent to a >5 standard deviation fluctuation of background
- Concluded that the top quark had been observed

Why Were We So Sure?

- Case based on experimental & theoretical evidence starting in 1970's
 - Observation of CP violation and charm begins the case
 - Properties of b quark strengthened it
 - Couldn't be an SU(2) singlet
 within SM framework
- Precision EWK measurements clinched it for most people

Searches pushed the technological envelope

- Rarest process observed in high energy hadron collisions
 - > Best measurements to date

 $\sigma_{tt} = 7.0 \pm 0.3(\text{stat}) \pm 0.4(\text{syst}) \pm 0.4(\text{lumi}) \text{ pb}$ (CDF) $\sigma_{tt} = 8.18^{+0.98}_{-0.87} \text{ pb}$ (DZero)

> CDF, Conference Note 9448 (2009) D0, Fermilab-PUB-09-092-E (2009)

- Had to develop b-tagging tools
- Reconstruct 6-parton final states

LEP EWK Group, Phys. Lett. B276, 247 (1992)

Interest in Top Quark at LHC

- Heaviest fermion in theory
 - Couples most strongly to Higgs field
 - Or whatever is responsible for EWK symmetry-breaking
 - Direct access to part of CKM matrix, V_{tb}
 - > Single top production as well as Γ_t measurement
 - In many models, new particles couple preferentially to t-tbar
- Properties are predicted in SM
 - Some are quite sensitive to "new" or "beyond-SM" physics
- Important calibration tool for LHC experiments
 - Leverage Tevatron experience to more rapidly understand detectors and environment

- Both general purpose experiments have increasingly prioritized top studies
 - CMS published host of notes
 - ATLAS recently published its "CSC" book
- Basis for these talks are
 - Studies at Tevatron
 - Studies at 14 TeV pp collisions
 - More recent studies at 10 TeV

ATLAS Collaboration, "Expected Performance of the ATLAS Experiment", CERN-OPEN-2008-20 (Dec 2008). CMS Collaboration, TOP-08-XX, TOP-09-YY. A. Quadt, Eur. Phys. J C48, 835 (2006)

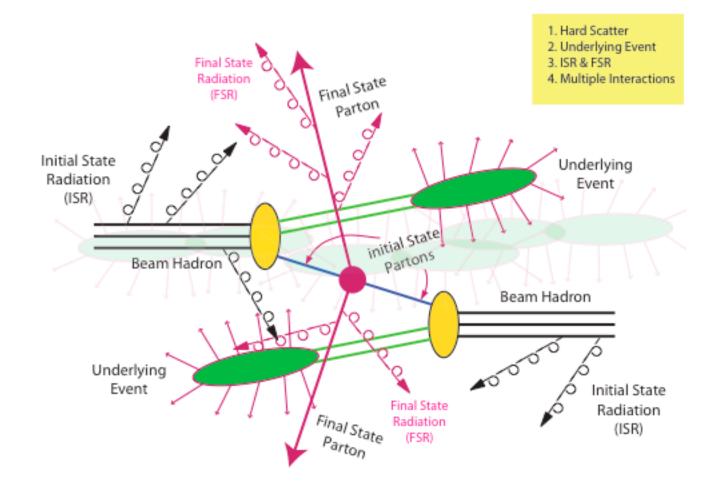
T. Liss and !. Quadt, Phys. Lett. B667, 1 (2008)

What I Will and Will Not Cover

Going to talk about

- Top quark cross section
 - > Use dileptons
- Top quark mass measurement
 - > Use lepton+jets
- Top quark charge measurement
 - > Event reconstruction
- Top quark spin correlations
 - > Illustrates some of the finer points of top quark physics
- High mass top quark pairs
 - > What happens at higher mass

- Not going to talk about measurements of
 - Single top production
 - Top quark rare decays
 - Width of top quark
 - P_T distribution of top quarks
 - Production mechanisms
 - Anomalous decays
 - > $t \rightarrow H^+b$, for example
 - Etc.
- Not because they aren't interesting (they are)
 - But we don't have a week....


Anatomy of a pp Collision

Pick apart the collision

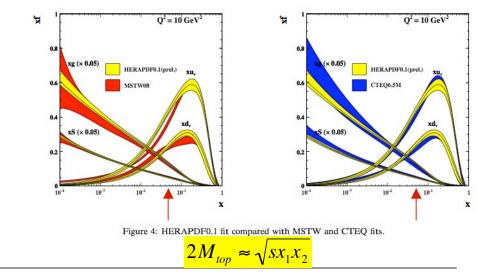
- Incoming proton bunches
 - > + beam halo and other garbage
- Assume time of interaction << timescale of any other process
 - Treat hadron as a "bag" of free partons
- Two partons interact
 - > Hard scattering process
- Rest of hadrons "fragment" into an underlying event (UE)
 - > Caused by initial acceleration?
- Maybe (usually?) have one or more independent collisions (pileup)
 - Increases low-energy particle multiplicities
 - > Has effects on instrumentation

- Acceleration process produces
 - Initial State Radiation (ISR)
 - Final State Radiation (FSR)
- UE characterized by
 - ~60 particles
 - Average PT ~ 0.5 GeV/c
 - Distributed uniformly in η
- Multiple interactions depend on
 - Instantaneous luminosity and crossing rate
 - Increases low-energy particle multiplicities
 - Long read-out times result in "pileup" effects from one crossing to the next

Picturing a Hard Scatter

First Look at Hard Scattering

- We assume two partons interact
 - Each has momentum fraction x₁, x₂ of hadron
 - Given by parton distribution function (PDFs)
 - > Either valence (u,d) or gluons
 & sea quarks

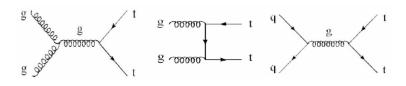

C. Diaconu, hep-ex/0901.0046v1

- Cross section given by

$$\sigma = \sum_{\substack{\text{initial partons } i \\ \text{colour } j}} C_{ij} \int_{0}^{1} d\tau \int_{\tau}^{1} \frac{dx_{1}}{\tau} \left[f_{1}(x_{1}) f_{2}(\tau/x_{1}) \right] \sigma_{\text{part}}^{i}(\tau s)$$

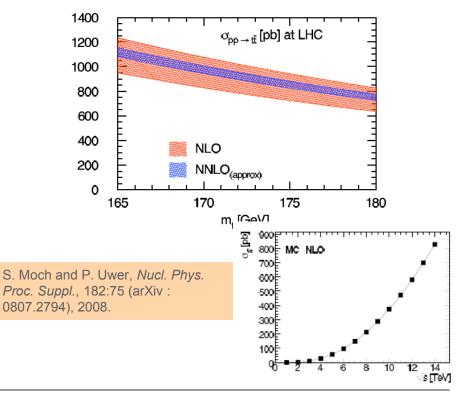
 σ_{part}^{i} is partonic cross section for process *i* $\tau = x_1 x_2$ "Factorize" the problem:

- Subprocess cross section
 - > Summed over colours & spins
- Colour average factors (C_{ij})
 - > $C_{ij} = 1/9$ for quarks
 - > $C_{ij} = 1/64$ for gluons
- Parton distribution functions (PDF)

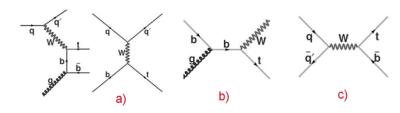


Top Quark Production

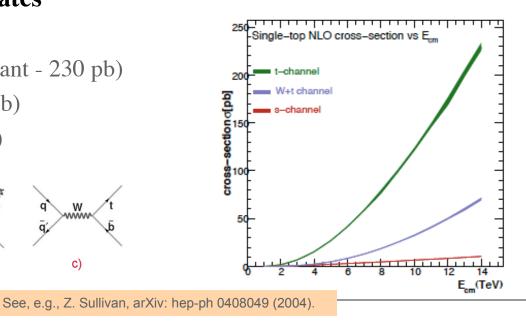
Start with primary partonic process


$$\sigma_{gg}(\hat{s}) = \frac{\pi \alpha_s^2}{3\hat{s}} \left[\left(1 + \rho + \frac{\rho^2}{16} \right) \ln \left(\frac{1+\beta}{1-\beta} \right) - \beta \left(\frac{7}{4} + \frac{31}{16} \rho \right) \right]$$

- > $\rho=4m_t^2/\hat{s}, \beta$ velocity
- gg is dominant source at LHC
- q-qbar annihilation modest addition


- Lowest order process dominates
 - Much work done on higherorder effects

- **Total cross section sensitive to**
 - Top quark mass m_t
 - Resummation effects
 - Centre of mass energy



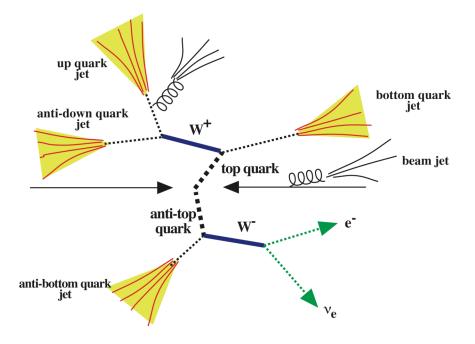
Single Top Quark Production

- Single top quark production also occurs
 - Challenge here is that backgrounds are significant
 - At Tevatron, took x100 more data to observe
- Situation is expected to be just as challenging given rates
 - Three mechanisms
 - > t-channel (dominant 230 pb)
 - > Wt channel (66 pb)
 - > s-channel (11 pb)

- An important process to study
 - One of the few ways that one can measure V_{tb}
 - Final state is similar to that arising from Higgs production
 - > W+b-bbar accessible because of leptonic decay of W

LHC a Top Quark Factory?

- **Calculate the rates:**
 - See where some of the numbers come from later


$$\sigma_{t\bar{t}} \approx 830 \ pb\left(\sqrt{s} = 14 \ TeV\right)$$

$$\Rightarrow r_{t\bar{t}} \approx \sigma_{t\bar{t}} \times L \times \varepsilon_{acc \times eff}$$

$$= \left(8.3 \times 10^{-34}\right) \left(1.0 \times 10^{32}\right) \left(4 \times 10^{-2}\right)$$

$$= 3.3 \times 10^{-3} \ s^{-1} = 1.2 / hour$$

- With 200 pb⁻¹, can expect
 - > 166,000 produced events
 - > 6,600 lepton+jet events

Very good calibration source

- > Lepton ID efficiencies
- > Missing Et
- > Jet Energy Scales
- > B tagging efficiencies

- Biggest challenge is correctly constructing final state
 - Tagging b's reduces this problem
 - But also reduces the rate of candidate events

Top Quark Decays

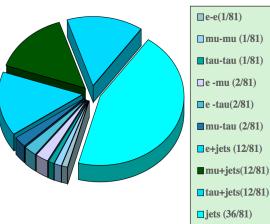
V_{tb}

w+`•

- Top decays are unique
 - Quark doesn't have time to hadronize
 - > Weak decay of bare quark
 - Weak decay dominated by V_{tb}
 - > CKM unitarity implies BR(t→Wb)>0.999
 - BR = 0.97±0.09 (DZero)
- Top quark width
 - Determined by SM couplings and mass
 - Prediction is $\Gamma_t = 1.3 \text{ GeV/c}^2$
 - > Measure $\Gamma_t < 12.7 \text{ GeV/c}^2$ at 95% C.L.
 - Observed width dominated by resolution

- Two-body decay kinematics
 - W decay results in 3-body final state
 - SM predicts W is longitudinally polarized
 - Smaller left-handed component
 - > No right-handed decay
- This effects decay kinematics
 - Can measure polarization using, e.g., spectra of final state particles

Top guark

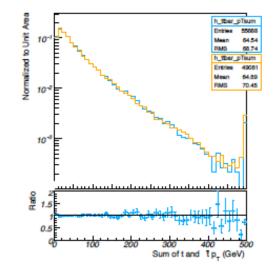

Momentum in COM

b quark

Top Quark Decay Modes

 Assuming SM, decay modes defined by

- 100% decay to Wb
- W decay to
 - > $ev, \mu v, \tau v (10.8 \pm 0.1)\%$ each
 - > c-sbar, u-dbar (33.8±0.2)% each
- Since top quarks most readily studied via pair-production
 - All-hadronic (multijet) final states
 - Lepton + jets final states
 - Dileptons



Experimental challenges include

- Reconstruction of 6-parton final state
 - > Identify partons as final state "objects"
 - Perhaps most complex final state studied
 - Associate objects to correct partons
 - Best algorithms in l+jets mode is ~60% correct
- Very "busy" final state
 - > Additional jets produced
 - Initial & final state radiation
- Multiple neutrinos
 - Particularly problematic in dilepton modes

Top Quark Kinematics

- Top quark is produced "centrally"
 - Mode of P_T distribution ~ 90 GeV/c
 - Most tops are within |η|<3
 - Produced back-to-back
 - ttbar system has modest P_T
- Defines kinematics of final state daughters

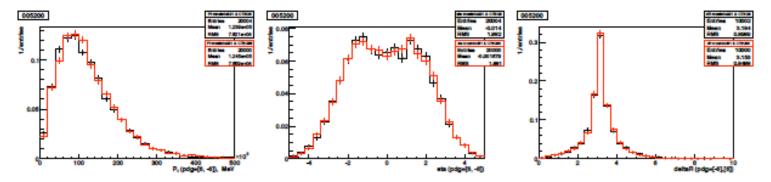
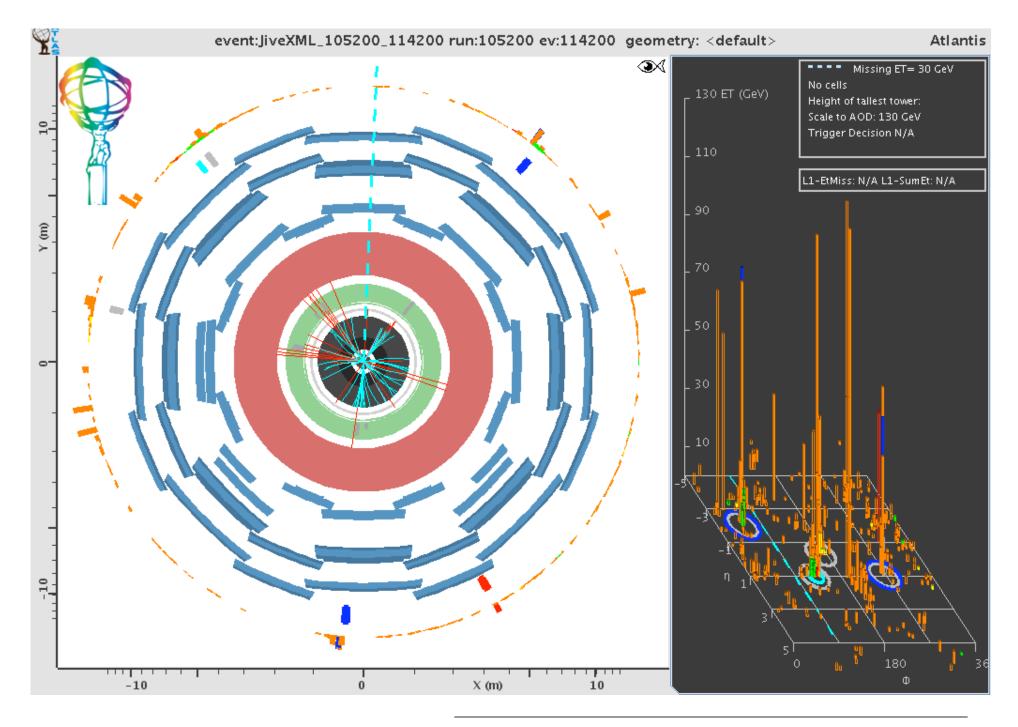



Figure 16: top and anti-top quarks p_T , η and δR (spherical angle between t and \bar{t} quarks) distributions in the $t\bar{t}$ events. The histogram with black circle markers correspond to CTEQ6 sample. The histogram with the red squares correspond to the CTEQ6.6 sample. Histograms are filled with MC@NLO event weights, ± 1 .

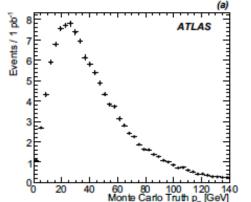
Acceptance x Efficiency

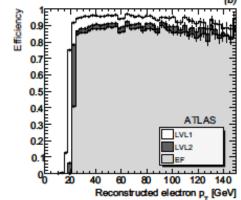
- Have to decide channel to focus on
 - Semi-leptonic channel is favourite "whipping boy"
 - Require
 - One W to decay leptonically (e/µ required in final state)
 - Charged lepton with $\langle P_T \rangle \sim 50 \text{ GeV/c}$
 - Neutrino with energy <P_T>~ 50 GeV/c
 - This also accepts some W->τν
 - > One W to decay hadronically
 - 2 jets with average <P_T>~ 50 GeV/c
 - > Two b jets
 - Maybe require jets, maybe tagged?
 - On average, a little harder...
 - Estimate BR = (2/9)x(2/3)x2=8/27=30%
 - > But need to run full MC! Why?

- Have to decide on trigger:
 - Inclusive e or μ
 - > $P_T > 20-25 \text{ GeV/c}$ > $|\eta| < 2.5$
 - Acceptance ~ 85 %
 - Efficiency ~ 90-95%
- Offline selection requirements
 - Lepton ID
 - $E_{\rm T}^{\rm miss} > 20 {\rm ~GeV}$
 - **3-4 jets**
 - $> E_T > 20-60 \text{ GeV}$
 - > $|\eta| < 2.5$
 - **B** tagging?
 - > Single b-tag efficiency around 50-60%

L1/L2/L3 Inclusive Lepton trigger

Think "Trigger!"


Triggering on top quarks straightforward


- Rely on inclusive lepton & dilepton triggers
 - > E_T thresholds around 20 GeV
- Multijets are harder
 - > Use complex jet criteria, e.g.
 - − ≥4 jets P_T >60 GeV/c
 - − ≥2 jets P_T >100 GeV/c
 - ≥1 jets P_T >170 GeV/c
 - > S/B still poor
- E_T^{miss} + jets provides redundant trigger

Example:

Inclusive lepton triggers

 > Efficiency of ~90% for selected lepton+jet events

Trigger	Signal Efficiency [%]	Relative Background Rate	S/B
4j60_2j100_j170	6	0.13	$2.8 \cdot 10^{-3}$
5j45_2j60_j100	16	0.34	$3.0 \cdot 10^{-3}$
6j35_5j45_4j50_3j60	10	0.18	$3.7 \cdot 10^{-3}$

Detector Acceptance & Efficiency

Detectors designed with specific physics processes in mind

- Break these down into
 - > Total transverse energy
 - > Charged leptons (e, μ, τ)
 - > Jets (quarks & gluons)
 - > Missing transverse energy
- Huh? But aren't we supposed to be discovering stuff?
 - Hope is that by focusing in detection and triggering of "basic elements", one will have a broad enough menu that new phenomena will be recorded

Doesn't seem like a bad idea

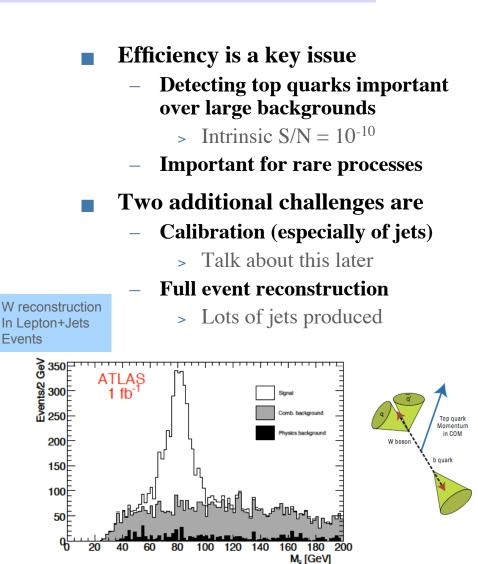
- > But creates practical challenges
- > Very large "trigger" menus

- Helpful to separate detector effects:
 - Acceptance: Fraction of events of a given process "contained" within the detector
 - Efficiency: Fraction of contained events/objects ultimately passing some set of criteria ("cuts")
 - Resolution: Accuracy of measurements of specific eventrelated quantities
- Warning: Not a strict convention on how these terms used!!
 - Always make sure you define what you mean

Tools for Top Reconstruction

Lepton Identification

- Electron & muon ID critical

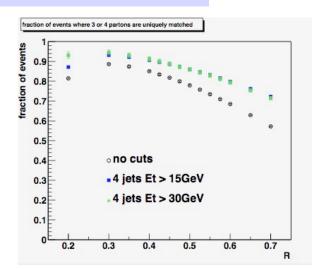

- > Reject QCD backgrounds
- Allow precise kinematic measurements

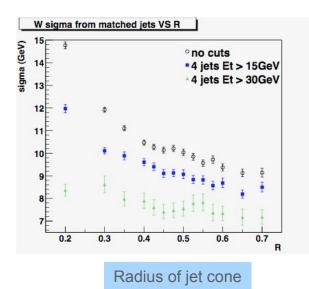
Jet reconstruction

- Messy objects
 - spatially large and hard to measure

Algorithms are important

- > Emphasize "small" jets
- > Cone sizes $\sim 0.4-0.5$ in R
- B tagging critical
 - > Efficiencies ~ 0.6
 - > Rejections ~ 200
- Missing Transverse Energy
 - Needs good calorimetry
 - Have largely lost P_z information


How Are These Chosen?


Study acceptance

- Learn that top quark production ~
 "central"
- Primary backgrounds (W+bb+jets) more distributed in η
- Lepton ID and jet reconstruction limiting factors

Maximize efficiency

- Requires S/N studies
- Look at different algorithms for event reconstruction
- Need to be systematic
 - But recognize that one has to make compromises

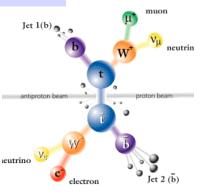
Top Quark Cross Section

Standard technique to measure cross section is

 $\sigma = \frac{N_{obs} - N_{bkgd}}{\varepsilon A \int L dt}$ $N_{obs}, N_{bkgd} =$ number observed, background events $\varepsilon A =$ efficiency times acceptance $\int L dt =$ integrated luminosity

Problem breaks down into

- Define selection to
 - > Get good efficiency
 - > Reject backgrounds
 - > Understand uncertainties
- Estimate the uncertainties


Look at cross section in dilepton mode

- Intrinsically cleaner
 - Lower QCD and
 W+bb backgrounds
- Also intrinsically smaller
 - > Efficiencies are <1%

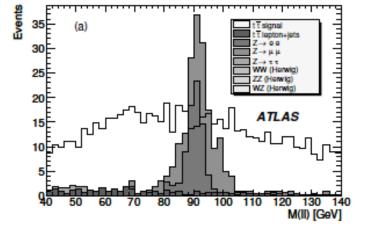
Have some challenges

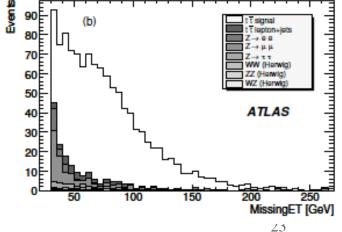
- > τ decays
 - Decaying leptonically
- > Leptons from b & c decay

2 Electrons	Total	2 W	1W 1b	1W 1c	1W 1Tau	1W 10ther
# Events	1,494	1,246	38	1	176	7
rate	100.0	83.4	2.5	0.1	11.8	0.5
2 Muons	Total	2 W	1W 1b	1W 1c	1W 1Tau	1W 10ther
# Events	2,831	2,203	313	6	258	3
rate	100.0	77.8	11.1	0.2	9.1	0.1
1 E 1Mu	Total	2 W	1W 1b	1W 1c	1W 1Tau	1W 10ther
# Events	4,167	3,293	320	5	453	18
rate	100.0	79.0	7.7	0.1	10.9	0.4

Dilepton Cross Section

Intrinsic backgrounds are large


- Z/W boson production
 - Eliminate by identifying Z mass peak


Motivates selection:

- Two clean lepton candidates
 - $> P_T > 20 \text{ GeV/c}$
- $E_{T}^{miss} > 30 \text{ GeV}$
- ≥2 jets $P_T > 60 \text{ GeV/c}$
- Reject Z's

Sample	$\sigma(pb)$	Filter(%)	$\sigma_{\rm eff}({ m pb})$	eμ	ee	μμ
tt (di-lepton)	833	7(21)	55	699	312	381
tī (semi-leptonic)		48(1 <i>l</i>)	397	31	20	8
$Z \rightarrow e^+ e^-$	2015	86	1733	5	37418	0
$Z \rightarrow \mu^+ \mu^-$	2015	89	1793	153	0	51139
$Z ightarrow au^+ au^-$	2015	5	101	249	101	159
$W \rightarrow ev$	20510	63	12920	42	69	0
$W \rightarrow \mu \nu$	20510	69	14150	152	0	40
WW	117	35	41	76	32	44
WZ	48	29	14	6	41	52
ZZ	15	19	3	1	25	31
single top	324	31	99	5	3	2

Number of events For 100 pb⁻¹

Cross Section Results

Have significant yield for selection

- Backgrounds under control as well
 - > Dimuons are in worst shape
- Expect about 987 signal events with 228 background in 100 pb⁻¹
- Systematic uncertainties
 - First pass would suggest ~5 %
 - > Dominated by jet energy scale
 - Luminosity uncertainty also ~5%
 - Statistical uncertainty
 - > 4% for 100 pb⁻¹
- Overall, looks straightforward
 - But note where Tevatron has had greatest challenge

dataset	eμ	ee	μμ	all channels]
tī (di-lepton)	555	202	253	987]
ε [%]	6.22	2.26	2.83	11.05	
tī (semi-leptonic)	24	11	4	39	1
$Z \rightarrow e^+ e^-$	0.0	9	0.0	20	
$Z ightarrow \mu^+ \mu^-$	5	0	51	79	
$Z ightarrow au^+ au^-$	17	4	6	25	
WW	6	2	2	10	
ZZ	0	0.2	0.4	0.9	
WZ	1	0.6	1	3	
$W \rightarrow e V_e$	7	7	0.0	14	
$W \rightarrow \mu \nu_{\mu}$	25	0.0	7	33	
single top Wt	0.7	0.5	0.0	1	
single top s-chann.	0.0	0.0	0.0	0.1	
single top t-chann.	2	0.8	1	4	
Total bkg.	86	36	73	228	
S/B	6.3	5.6	3.4	4.3	

Δσ/σ (%)	eμ	ee	μμ	All
CTEQ6.1 Variation MRST2001E Variation JES -5% JES + 5% FSR	2.4 0.9 (2.0) 2.4 2.0	2.9 1.1 - 4.1 2.0	2.0 0.7 (3.1) 4.7 4.0	2.4 0.9 (2.1) 4.6 2.0
ISR	1.1	1.1	4.0	1.1
Total				5.0

Tevatron Data with B-Tagging

Most accurate top quark cross section

- Lepton+jets
- SECVTX b-tagging

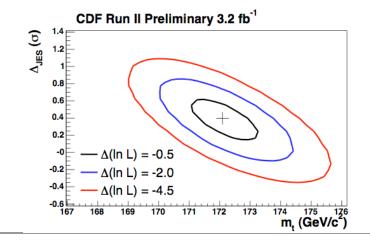
Strategy

- Use MC to determine overall acceptance
- Measure trigger efficiency with W->lv
- Measure lepton ID efficiency with Z->ll
- Measure b-tagging efficiency in data
- Estimate systematic uncertainties

Systematic	Inclusive (Tight)	Double (Loose)
Lepton ID	1.8	3
ISR	0.5	0.2
FSR	0.6	0.6
PDFs	0.9)
Pythia vs. Herwig	2.2	1.1
Luminosity	6.2	2
JES	6.1	4.1
b-Tagging	5.8	12.1
c-Tagging	1.1	2.1
l-Tagging	0.3	0.7
Non-W	1.7	1.3
W+HF Fractions	3.3	2.0
Mistag Matrix	1.0	0.3
Total	11.5	14.8

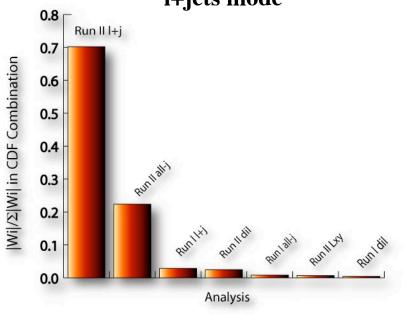
	CEM	CMUP	CMX	Total
Sample (total)	344 264	344 264	344 264	344 264
# Events w/o b-tag	15 893	9791	3617	29 301
Acc. w/o b-tag (%)	$4.09 \pm 0.03 \pm 0.36$	$2.13 \pm 0.02 \pm 0.19$	$0.959 \pm 0.016 \pm 0.085$	$7.18 \pm 0.04 \pm 0.61$
# Tagged Events	8490	5202	1965	15657
Tag Efficiency (%)	$53.4 \pm 0.4 \pm 3.2$	$53.1 \pm 0.5 \pm 3.2$	$54.3 \pm 0.8 \pm 3.3$	$53.4 \pm 0.3 \pm 3.2$
Acc. with b-tag (%)	$2.19 \pm 0.02 \pm 0.23$	$1.14 \pm 0.01 \pm 0.12$	$0.512 \pm 0.009 \pm 0.054$	$3.84 \pm 0.03 \pm 0.40$
Integ. Lumi. (pb-1)	162 ± 10	162 ± 10	150 ± 9	

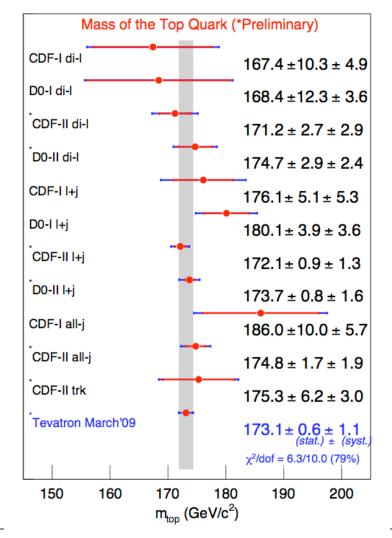
TABLE XI. Summary table of the $t\bar{t}$ acceptance, for a top quark mass of 175 GeV/ c^2 .


D. Acosta et al., PRD 71, 052003 (2005)

Top Quark Mass

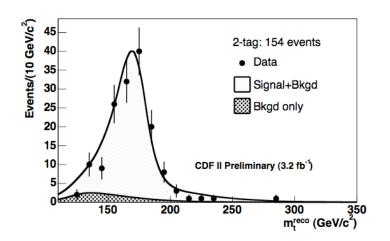
- A precision measurement of top quark mass m_t scientifically important
 - Tests consistency of Standard Model
 - Bare quark first opportunity to study one directly
 - Heaviest fermion, so couples strongly to Higgs boson
- Not just "another" quark mass
 - Heaviest fermion in theory
 - > Couples to Higgs boson in SM
 - > m_Z , m_W , m_t and m_H are all related
 - At a level of ~0.5 GeV/c², start to test other aspects of theory
 - Stability of pole mass with respect to MS-bar mass
 - Non-perturbative QCD effects become important


 Presents important experimental challenges


- Requires us to understand
 - > Jet energy scales very well
 - > Effects of underlying event
- Tevatron experiments have "raised the bar"
 - Precision $\sim 0.7\%$, or 1.1 GeV/c²
 - Found solutions to many problems
 - Achieving comparable precision at LHC will be a challenge!

Latest Tevatron Results

- Measured mass in essentially all modes
 - With half of available
 Tevatron data,
 systematics limited
 - Most precise measurement is in l+jets mode

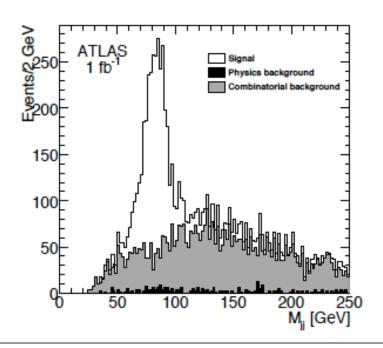


Mass Measurement Techniques

- All techniques based on simple kinematics
 - Heavier the object, the more energetic the daughters
- Variations in how one correlates observed final state with m_t
 - Directly measure using 4momentum reconstruction
 - > Correct for resolution effects
 - Employ matrix element approach
 - > Use "transfer functions" for detector resolution
 - Look at subset of information
 - > Example, lepton P_T

Many complications

- Cannot reconstruct final state of 6 partons correctly
- Jet energy calibrations
- Background sources
- Example of how well one can do:
 - Mass reconstruction in doubletagged lepton+jet events

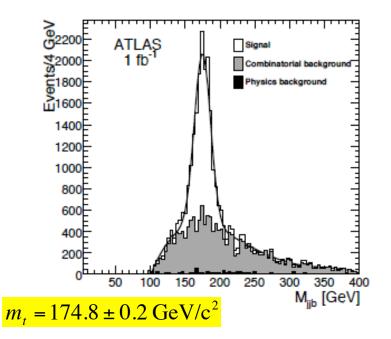


Example LHC Analysis

Select l+jets mode

- Require $e(\mu)$ with $P_T > 25(20)$ GeV/c
- Require Missing E_T>20 GeV
- 4 or more jets
 - > P_T >40 GeV/c and $|\eta|$ <2.4
- Require two b-tagged jet
- Use inclusive lepton trigger
 - > About 90% efficient on e/μ + jets
- Selection has 1.8% efficient
 - Expect 16 pb of selected events
 - Jet and b-tag cuts selected to reject backgrounds
- Reconstruct final state
 - Choose 4 highest P_T jets
 - Use a χ^2 to choose best parton assignments
 - Use dijet mass to constrain jet energy scale
 - > Perform a fit to extract m_t

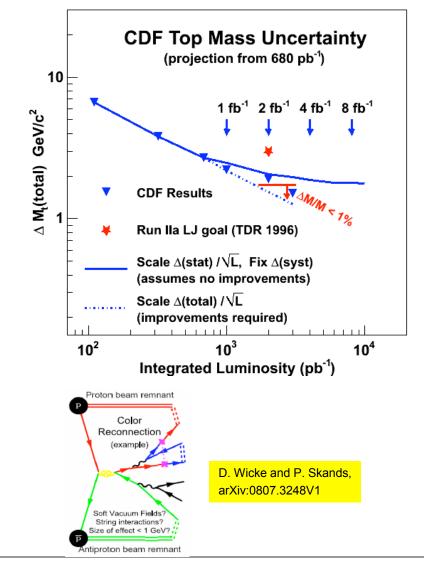
Process	Number	1 isolated lepton	>= 4 jets	2 b-jets
	of events	$p_T > 20 \text{ GeV}$	$p_T > 40 \text{ GeV}$	$p_T > 40 \text{ GeV}$
		and $E_T > 20 \text{GeV}$		
Signal	313200	132380	43370	15780
W boson backgrounds	9.5 ×10 ⁵	154100	9450	200
all-jets (top pairs)	466480	1020	560	160
di-lepton (top pairs)	52500	16470	2050	720
single top, t channel	81500	24400	1230	330
single top, W t channel	9590	8430	770	170
single top, s channel	720	640	11	5


LHC m_t Precision

Statistical accuracy

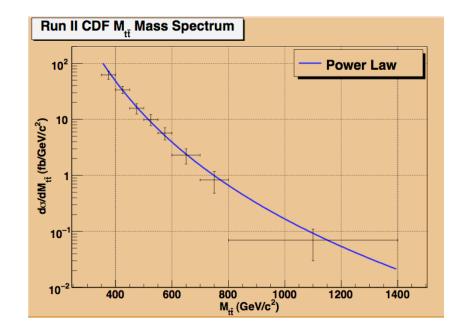
- At 0.2 GeV/c², not limiting factor
- Resolution ~11-12 GeV/c²

Systematic uncertainties dominate

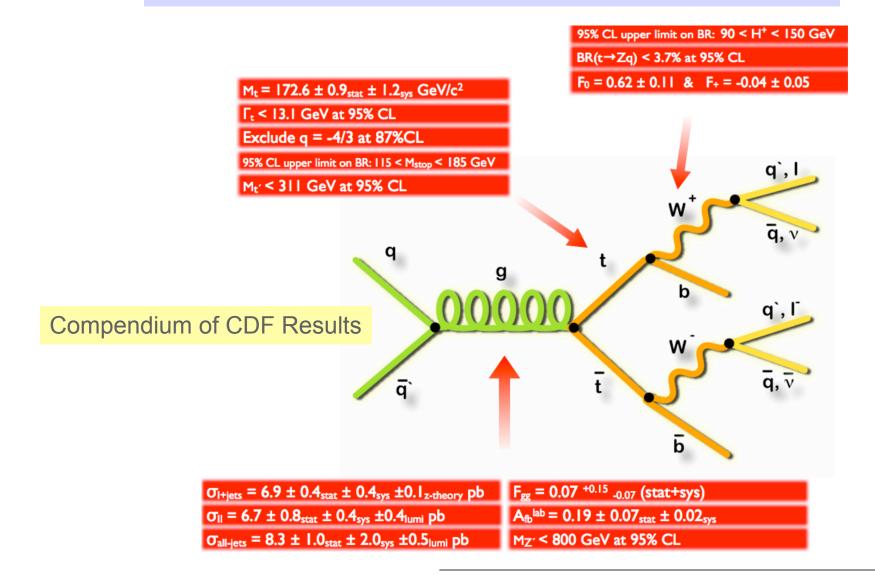

- Mass depends linearly on jet energy scale (JES) uncertainties
 - Light quark jet JES constrained by W mass to <1%
 - B-jet JES comes from MC modelling
 - Tevatron estimates ~0.5 %
- Model uncertainties are likely larger in practice
 - This will be area of intense work

Systematic uncertainty	χ^2 minimization method	geometric method
Light jet energy scale	0.2 GeV/%	0.2 GeV/%
b jet energy scale	0.7 GeV/%	0.7 GeV/%
ISR/FSR	$\simeq 0.3 \text{ GeV}$	$\simeq 0.4 \text{ GeV}$
b quark fragmentation	$\leq 0.1 \text{ GeV}$	$\leq 0.1 \text{ GeV}$
Background	negligible	negligible
Method	0.1 to 0.2 GeV	0.1 to 0.2 GeV

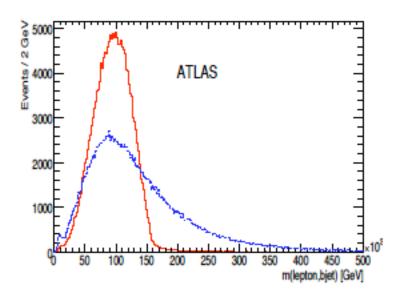
Many Other Mass Measurements


- Use all channels
 - Dileptons
 - Multijets
- More importantly, use different techniques with different systematics
 - Decay length of b
 - Lepton P_T distribution
 - Multivariate techniques
 - > Neural networks
 - > Maximum likelihood
- Very quickly systematics-limited
 - More statistics helps, but only if systematics are tackled
 - For example, colour reconnection effects

Top Quark Properties


Many important properties, e.g.,

- Top quark charge
- Spin polarizations
- Flavour-changing neutral currents (FCNC) in top decays
- t-tbar resonances
- In many cases, there are early Tevatron results
 - Suffer from low statistics
 - "Top factory" mode allows one to extend all of these in significant ways
 - Area where there will be much new territory to cover


$$\frac{d\sigma}{dM_{t\bar{t}}} \propto \left(M_{t\bar{t}}\right)^{(-6.1\pm0.9)}$$

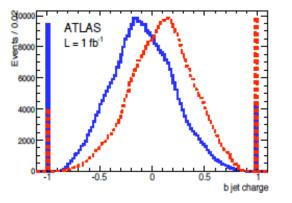
What We Know Already?

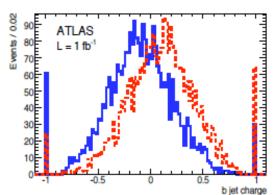
Top Quark Charge

- To directly measure the top quark charge
 - Need to show correlation
 - > W+b versus W-b
 - One technique is to fully reconstruct ttbar events
 - Employ "standard" selection
 - Isolated $e(\mu)$
 - > P_T >20(25) GeV/c and $|\eta|$ <2.5
 - ≥4 jets
 - > P_T >30 GeV/c and $|\eta|$ <2.5
 - > At least two b-tagged jets
 - $E_{\rm T}^{\rm miss} > 20 {\rm ~GeV}$
 - Yield is about 2.5% of total production
 - So about 21,000 events in 1 fb⁻¹

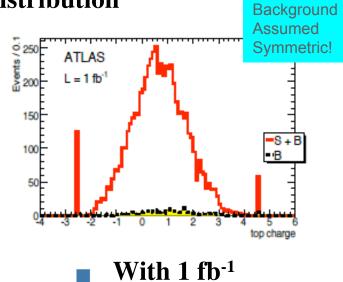
- Associate W and b using kinematics
 - Invariant l+b mass < 155 GeV/c²
 - > Maximizes $\varepsilon(2P-1)^2$
 - ε being efficiency
 - P being "purity"
- Use method to determine b jet charge
 - Track counting algorithm
 - Semi-leptonic b decay

Charge Results


One intuitive algorithm


Sum charges of all tracks in a jet

 $Q_{bjet} = \frac{\sum_{i} q_{i} |j_{i} \bullet p_{i}|^{\kappa}}{\sum_{i} |j_{i} \bullet p_{i}|^{\kappa}}$ $j_{i} = b \text{ jet axis}$ $q_{i}, p_{i} = \text{track charge, vector}$ $\kappa = 0.5$

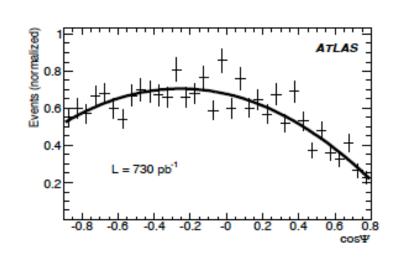

- Have to use MC to calibrate

- > Results in $Q_b/Q_{meas} = 3.54 \pm 0.16$
- Source of largest systematic uncertainty

Results in top charge distribution

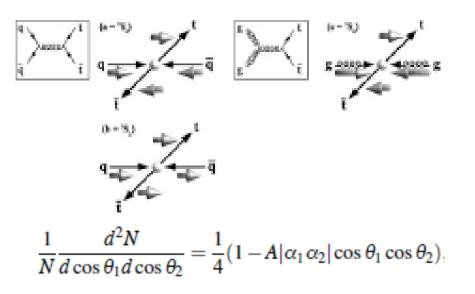
$Q_t = 0.67 \pm 0.06 \text{ (stat)} \pm 0.08 \text{ (syst)}$

- -20σ measurement
- Relies on good modelling of b jets!


Top Quark Spin Effects

- **Two sources of "spin" effects**
 - Top quark decay vertex
 - Top quark spin correlations
- Top quark decay results in polarized W boson
 - Three possible polarization states
 - > "Longitudinal" (F_0) is preferred

$$\frac{1}{N}\frac{dN}{d\cos\Psi} = \frac{3}{2}\left[F_0\left(\frac{\sin\Psi}{\sqrt{2}}\right)^2 + F_L\left(\frac{1-\cos\Psi}{2}\right)^2 + F_R\left(\frac{1+\cos\Psi}{2}\right)^2\right]$$


- > SM: $F_0=0.695$, $F_L=0.304$
- Look at lepton decay angle Ψ in top quark rest frame
- Sensitive to physics of top quark decay vertex

- Need to be careful about selection
 - Standard selection creates some bias in Ψ
 - Have to correct with MC
 - In 1 fb⁻¹, expect to measure F₀
 - > Statistical uncertainty ~0.04
 - > Systematic uncertainty ~0.02

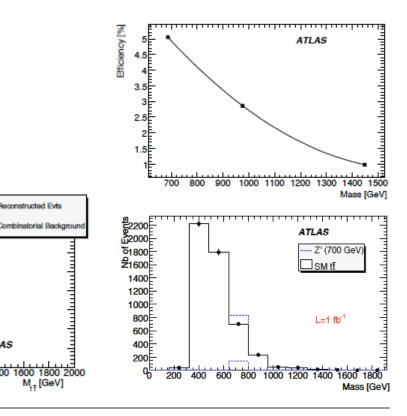
Top Quark Spin Correlations

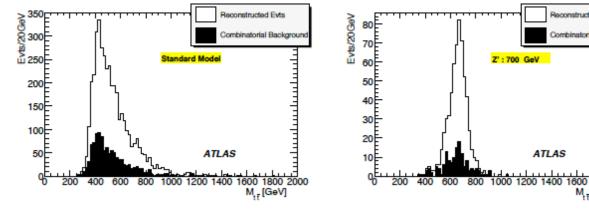
- Top quark spin correlations at production
 - Reveal nature of the production mechanism
 - SM predicts s-channel gg fusion will dominate
 - At threshold, forces top quarks to be anti-aligned
 - At least in "beam-line" basis
- Strategy is to use top quark decay products as spin analyzers
 - Measure the correlations and compare with expectations
 - $\begin{array}{ll} & Use \ angle \ of \ decay \ lepton \ (\theta_i) \\ & with \ respect \ to \ parent \ top \end{array}$
 - > In t-tbar rest frame

Have to measure analyzing power with MC

- Can measure A with 1 fb⁻¹
 - > Statistical uncertainty of ~0.2
 - > Systematics are less wellunderstood (0.2-0.3?)
- Remains a challenge

Top Pair Resonances

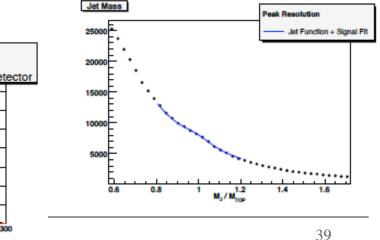

constructed Evts


1800 M,,[GeV]

- Top quark pairs unique probe to search for high mass objects
 - Many BSM interactions couple preferentially to t-tbar
 - Expect to see effects at high M_{tt}
- **Default approach: use standard** event selection
 - Look for excess of events

- Suffer from jet "merging"
 - > Efficiency for $Z' \rightarrow t$ -tbar drops precipitously

High Mass Top Pairs


- Much recent work to understand high mass top system
 - "top jets" become interesting
 - But significant challenges
 - > Lose lepton ID
 - QCD backgrounds explode
 - Mass reconstruction strategy changes
 - Example is shown below
 - Using R=0.4 cone jet
 algorithm Jet Mass (C4 P)

L.G.Almeida et al., Phys.Rev.

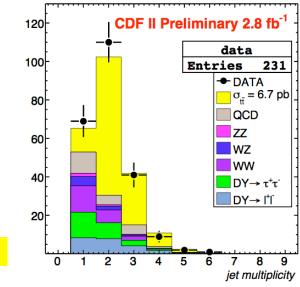
D79, 074012, (2009)

 $\mathbf{1}$

- Challenge is understanding QCD background
 - Signal ($P_T > 1 \text{ TeV/c}$) ~ 100 fb
 - Background from QCD ~ 10 pb
- Looking at jet shape variables
 - Very early days in strategy development
 - Clearly a high-statistics measurement (>20 fb^{-1?})

What We Don't Know (But Should)

Sense of "certainty" around top quarks perhaps misplaced


- Don't understand experimental conditions well
 - > Effects of pileup will be a challenge
 - ISR/FSR models aren't very predictive
- Underlying physics is uncertain
 - > What really causes mass?
 - > What are the top quark's couplings?
 - > How does the t-tbar system get produced?

CDF Public Note 9647 (2008)

Not going to get answers to these until we have real data

- One example: extra jet production
 - Look at dilepton events at Tevatron
 - > See lots of extra jets!

Pretag Top Candidates With Njet ≥ 1

Summary

- Hope this has given you a flavour of top quark physics at the LHC
 - High statistics provides a unique environment for top studies
 - Trade off between analyzing power and systematic effects
 - Environment is still challenging
 - > Backgrounds are large
 - > High luminosity environment
- Can do much with restrictive selections
 - However, somewhat "brute force"
 - Analyses will require greater sophistication than studies to date
- **Data is now essential**
 - Allow us to prepare for next decade of top quark physics

