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Some Introductory Comments

 Standard approach to these sorts of lectures
– Begin with theoretical background
– Focus on the phenomenological issues

> What does theory tell us?
> What have we learned from measurements?
> What next?

 Approach here will be a little more experimental
– Start with discovery with top, then talk about formal stuff
– Work to develop an appreciation of what top quark

production & decay looks like
– Talk about all the stuff that you need to know

> But work to hide “under the carpet” the details
– Objective is to give audience a flavour of what we will

learn at the LHC by studying the top quark system



3

The Top Quark Revealed

 Experiments at Fermilab
Tevatron
– studying p-pbar collisions at

1.8 TeV
– Looked at ~2x1012 collisions
– Searching for events with

> Evidence of a W boson
– Decaying leptonically

into either eve or mnm

> 3 or more jets
– At least one showing

evidence of a b quark
decay (“b tag”)

 Observed an excess of events
above SM & instrumental
backgrounds

 Evidence for a previously
unobserved process
– Excess of events equivalent to

a >5 standard deviation
fluctuation of background

 Concluded that the top quark
had been observed

CDF, PRL 74, 2626 (1995)
D0, PRL 74, 2632 (1995)
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Why Were We So Sure?

 Case based on experimental &
theoretical evidence starting in
1970’s
– Observation of CP violation

and charm begins the case
– Properties of b quark

strengthened it
> Couldn’t be an SU(2) singlet

within SM framework

 Precision EWK measurements
clinched it for most people

 Searches pushed the
technological envelope
– Rarest process observed in high

energy hadron collisions
> Best measurements to date

– Had to develop b-tagging tools
– Reconstruct 6-parton final

states

! 

"
tt

= 7.0 ± 0.3(stat) ± 0.4(syst) ± 0.4(lumi) pb (CDF)

"
tt

= 8.18#0.87
+0.98 pb (DZero)

CDF, Conference Note 9448 (2009)
D0, Fermilab-PUB-09-092-E (2009)

LEP EWK Group, Phys. Lett. B276, 247 (1992)
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Interest in Top Quark at LHC

 Heaviest fermion in theory
– Couples most strongly to Higgs

field
> Or whatever is responsible for

EWK symmetry-breaking
– Direct access to part of CKM

matrix, Vtb
> Single top production as well as
Γt measurement

– In many models, new particles
couple preferentially to t-tbar

 Properties are predicted in SM
– Some are quite sensitive to “new”

or “beyond-SM” physics

 Important calibration tool for LHC
experiments

– Leverage Tevatron experience to
more rapidly understand detectors
and environment

 Both general purpose
experiments have increasingly
prioritized top studies
– CMS published host of notes
– ATLAS recently published its

“CSC” book

 Basis for these talks are
– Studies at Tevatron
– Studies at 14 TeV pp collisions
– More recent studies at 10 TeV

ATLAS Collaboration, “Expected Performance of the ATLAS
Experiment”, CERN-OPEN-2008-20 (Dec 2008).
CMS Collaboration, TOP-08-XX, TOP-09-YY.
A. Quadt, Eur. Phys. J C48, 835 (2006)
T. Liss and !. Quadt, Phys. Lett. B667, 1 (2008)
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What I Will and Will Not Cover

 Going to talk about
– Top quark cross section

> Use dileptons
– Top quark mass measurement

> Use lepton+jets
– Top quark charge measurement

> Event reconstruction
– Top quark spin correlations

> Illustrates some of the finer
points of top quark physics

– High mass top quark pairs
> What happens at higher mass

 Not going to talk about
measurements of
– Single top production
– Top quark rare decays
– Width of top quark
– PT distribution of top quarks
– Production mechanisms
– Anomalous decays

> t→H+b, for example
– Etc.

 Not because they aren’t
interesting (they are)
– But we don’t have a week….
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Anatomy of a pp Collision

 Pick apart the collision
– Incoming proton bunches

> + beam halo and other garbage
– Assume time of interaction <<

timescale of any other process
> Treat hadron as a “bag” of free

partons
– Two partons interact

> Hard scattering process
– Rest of hadrons “fragment” into an

underlying event (UE)
> Caused by initial acceleration?

– Maybe (usually?) have one or more
independent collisions (pileup)

> Increases low-energy particle
multiplicities

> Has effects on instrumentation

 Acceleration process produces
– Initial State Radiation (ISR)
– Final State Radiation (FSR)

 UE characterized by
– ~60 particles
– Average PT ~ 0.5 GeV/c
– Distributed uniformly in η

 Multiple interactions depend on
– Instantaneous luminosity and crossing

rate
> Increases low-energy particle

multiplicities
– Long read-out times result in “pileup”

effects from one crossing to the next
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Picturing a Hard Scatter
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 First Look at Hard Scattering

 We assume two partons interact
– Each has momentum fraction

x1, x2 of hadron
> Given by parton distribution

function (PDFs)
> Either valence (u,d) or gluons

& sea quarks
– Cross section given by

! 
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 “Factorize” the problem:
– Subprocess cross section

> Summed over colours & spins
– Colour average factors (Cij)

> Cij = 1/9 for quarks
> Cij = 1/64 for gluons

– Parton distribution functions (PDF)

C. Diaconu, hep-ex/0901.0046v1
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Top Quark Production

 Start with primary partonic
process

> ρ=4mt
2/ŝ, β velocity

– gg is dominant source at LHC
– q-qbar annihilation modest

addition

 Lowest order process dominates
– Much work done on higher-

order effects

 Total cross section sensitive to
– Top quark mass mt

– Resummation effects
– Centre of mass energy

S. Moch and P. Uwer, Nucl. Phys.
Proc. Suppl., 182:75 (arXiv :
0807.2794), 2008.
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Single Top Quark Production

 Single top quark production also
occurs
– Challenge here is that

backgrounds are significant
– At Tevatron, took x100 more

data to observe

 Situation is expected to be just
as challenging given rates
– Three mechanisms

> t-channel (dominant - 230 pb)
> Wt channel (66 pb)
> s-channel (11 pb)

 An important process to study
– One of the few ways that one

can measure Vtb

– Final state is similar to that
arising from Higgs production

> W+b-bbar accessible because
of leptonic decay of W

See, e.g., Z. Sullivan, arXiv: hep-ph 0408049 (2004).
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LHC a Top Quark Factory?

 Calculate the rates:
– See where some of the

numbers come from later

– With 200 pb-1, can expect
> 166,000 produced events
> 6,600 lepton+jet events

 Very good calibration source
> Lepton ID efficiencies
> Missing Et
> Jet Energy Scales
> B tagging efficiencies

 Biggest challenge is correctly
constructing final state

– Tagging b’s reduces this
problem

> But also reduces the rate
of candidate events

! 

"
tt 
# 830 pb s =14 TeV( )

$ r
tt 
#"

tt 
% L %&acc%eff

= 8.3%10
'34( ) 1.0 %1032( ) 4 %10'2( )

= 3.3%10'3 s-1 =1.2 /hour
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Top Quark Decays
 Top decays are unique

– Quark doesn’t have time to
hadronize

> Weak decay of bare quark
– Weak decay dominated by Vtb

> CKM unitarity implies
BR(t→Wb)>0.999

– BR = 0.97±0.09 (DZero)

 Top quark width
– Determined by SM

couplings and mass
– Prediction is Γt = 1.3 GeV/c2

> Measure Γt < 12.7 GeV/c2 at
95% C.L.

> Observed width dominated by
resolution

 Two-body decay kinematics
– W decay results in

3-body final state
– SM predicts W is

longitudinally polarized
> Smaller left-handed

component
> No right-handed decay

 This effects decay
kinematics
– Can measure polarization

using, e.g., spectra of final
state particles
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Top Quark Decay Modes
 Assuming SM, decay modes defined

by
– 100% decay to Wb
– W decay to

> eν, µν, τν (10.8±0.1)% each
> c-sbar, u-dbar (33.8±0.2)% each

 Since top quarks most readily
studied via pair-production

– All-hadronic (multijet) final states
– Lepton + jets final states
– Dileptons

 Experimental challenges include
– Reconstruction of 6-parton final

state
> Identify partons as final state

“objects”
– Perhaps most complex final

state studied

> Associate objects to correct
partons

– Best algorithms in l+jets mode is
~60% correct

– Very “busy” final state
> Additional jets produced

– Initial & final state radiation

– Multiple neutrinos
> Particularly problematic in

dilepton modes
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Top Quark Kinematics

 Top quark is produced “centrally”
– Mode of PT distribution ~ 90 GeV/c
– Most tops are within |η|<3
– Produced back-to-back
– ttbar system has modest PT

 Defines kinematics of final state
daughters



16



17

Acceptance x Efficiency

 Have to decide channel to focus on
– Semi-leptonic channel is favourite

“whipping boy”
– Require

> One W to decay leptonically (e/µ
required in final state)

– Charged lepton with <PT>~ 50 GeV/c
– Neutrino with energy <PT>~ 50 GeV/c
– This also accepts some W->τν

> One W to decay hadronically
– 2 jets with average <PT>~ 50 GeV/c

> Two b jets
– Maybe require jets, maybe tagged?
– On average, a little harder…

– Estimate BR = (2/9)x(2/3)x2=8/27=30%
> But need to run full MC! Why?

 Have to decide on trigger:
– Inclusive e or µ

> PT > 20-25 GeV/c
> |η| < 2.5

– Acceptance ~ 85 %
– Efficiency ~ 90-95%

 Offline selection
requirements

– Lepton ID
– ET

miss > 20 GeV
– 3-4 jets

> ET>20-60 GeV
> |η| < 2.5

– B tagging?
> Single b-tag efficiency

around 50-60%

L1/L2/L3
Inclusive
Lepton
trigger
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Think “Trigger!”

 Triggering on top quarks
straightforward

– Rely on inclusive lepton &
dilepton triggers

> ET thresholds around 20 GeV
– Multijets are harder

> Use complex jet criteria, e.g.
– ≥4 jets PT>60 GeV/c
– ≥2 jets PT>100 GeV/c
– ≥1 jets PT>170 GeV/c

> S/B still poor
– ET

miss + jets provides redundant
trigger

 Example:
– Inclusive lepton triggers

> Efficiency of ~90% for selected
lepton+jet events
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Detector Acceptance & Efficiency

 Detectors designed with specific
physics processes in mind

– Break these down into
> Total transverse energy
> Charged leptons (e, µ, τ)
> Jets (quarks & gluons)
> Missing transverse energy

– Huh?  But aren’t we supposed to be
discovering stuff?

> Hope is that by focusing in
detection and triggering of “basic
elements”, one will have a broad
enough menu that new phenomena
will be recorded

– Doesn’t seem like a bad idea
> But creates practical challenges
> Very large “trigger” menus

 Helpful to separate detector effects:

– Acceptance:  Fraction of events of a
given process “contained” within
the detector

– Efficiency: Fraction of contained
events/objects ultimately passing
some set of criteria (“cuts”)

– Resolution: Accuracy of
measurements of specific event-
related quantities

 Warning:  Not a strict convention
on how these terms used!!

– Always make sure you define what
you mean
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Tools for Top Reconstruction

 Lepton Identification
– Electron & muon ID critical

> Reject QCD backgrounds
> Allow precise kinematic

measurements

 Jet reconstruction
– Messy objects

> spatially large and hard to
measure

– Algorithms are important
> Emphasize “small” jets
> Cone sizes ~ 0.4-0.5 in R

– B tagging critical
> Efficiencies ~ 0.6
> Rejections ~ 200

 Missing Transverse Energy
– Needs good calorimetry
– Have largely lost Pz information

 Efficiency is a key issue
– Detecting top quarks important

over large backgrounds
> Intrinsic S/N = 10-10

– Important for rare processes

 Two additional challenges are
– Calibration (especially of jets)

> Talk about this later
– Full event reconstruction

> Lots of jets producedW reconstruction
In Lepton+Jets
Events
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�How Are These Chosen?

 Study acceptance
– Learn that top quark production ~

“central”
– Primary backgrounds (W+bb+jets)

more distributed in η
– Lepton ID and jet reconstruction

limiting factors

 Maximize efficiency
– Requires S/N studies
– Look at different algorithms for

event reconstruction
– Need to be systematic

> But recognize that one has to make
compromises

Radius of jet cone



22

Top Quark Cross Section

 Standard technique to 
measure cross section is

 Problem breaks down into
– Define selection to

> Get good efficiency
> Reject backgrounds
> Understand uncertainties

– Estimate the uncertainties

! 

" =
Nobs # Nbkgd

$A Ldt%
Nobs,Nbkgd = number observed, background events

$A = efficiency times acceptance

Ldt% = integrated luminosity

 Look at cross section in
dilepton mode
– Intrinsically cleaner

> Lower QCD and
W+bb backgrounds

– Also intrinsically smaller
> Efficiencies are <1%

– Have some challenges
> τ decays

– Decaying leptonically

> Leptons from b & c decay
2 Electrons  Total  2 W  1W 1b  1W 1c  1W 1Tau  1W 1Other 

# Events 1,494          1,246       38            1              176            7                

rate 100.0          83.4         2.5           0.1           11.8           0.5             

2 Muons Total 2 W 1W 1b 1W 1c 1W 1Tau 1W 1Other 

# Events 2,831          2,203       313          6              258            3                

rate 100.0          77.8         11.1         0.2           9.1             0.1             

1 E 1Mu Total 2 W 1W 1b 1W 1c 1W 1Tau 1W 1Other 

# Events 4,167          3,293       320          5              453            18              

rate 100.0          79.0         7.7           0.1           10.9           0.4             
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Dilepton Cross Section

 Intrinsic backgrounds are large
– Z/W boson production

> Eliminate by identifying Z
mass peak

 Motivates selection:
– Two clean lepton candidates

> PT > 20 GeV/c
– ET

miss > 30 GeV
– ≥2 jets PT > 60 GeV/c
– Reject Z’s

Number of events
For 100 pb-1
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Cross Section Results
 Have significant yield for selection

– Backgrounds under control as well
> Dimuons are in worst shape

– Expect about 987 signal events with
228 background in 100 pb-1

 Systematic uncertainties
– First pass would suggest ~5%

> Dominated by jet energy scale
– Luminosity uncertainty also ~5%
– Statistical uncertainty

> 4% for 100 pb-1

 Overall, looks straightforward
– But note where Tevatron has had

greatest challenge

!"/" (%) eµ ee µµ All

CTEQ6.1 Variation 2.4    2.9    2.0    2.4    

MRST2001E Variation 0.9    1.1    0.7    0.9    

JES -5% (2.0)   -    (3.1)   (2.1)   

JES + 5% 2.4    4.1    4.7    4.6    

FSR 2.0    2.0    4.0    2.0    

ISR 1.1    1.1    1.2    1.1    

Total 5.0    
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Tevatron Data with B-Tagging

 Most accurate top quark cross section
– Lepton+jets
– SECVTX b-tagging

 Strategy
– Use MC to determine overall acceptance
– Measure trigger efficiency with W->lν
– Measure lepton ID efficiency with Z->ll
– Measure b-tagging efficiency in data
– Estimate systematic uncertainties

D. Acosta et al., PRD 71, 052003 (2005)
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Top Quark Mass
 A precision measurement of top

quark mass mt scientifically
important

– Tests consistency of Standard Model
– Bare quark – first opportunity to

study one directly
– Heaviest fermion, so couples strongly

to Higgs boson

 Not just “another” quark mass
– Heaviest fermion in theory

> Couples to Higgs boson in SM
> mZ, mW, mt and mH are all related

– At a level of ~0.5 GeV/c2, start to test
other aspects of theory

> Stability of pole mass with respect
to MS-bar mass

> Non-perturbative QCD effects
become important

 Presents important experimental
challenges

– Requires us to understand
> Jet energy scales very well
> Effects of underlying event

 Tevatron experiments have “raised
the bar”

– Precision ~0.7%, or 1.1 GeV/c2

– Found solutions to many problems
– Achieving comparable precision at

LHC will be a challenge!
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Latest Tevatron Results

 Measured mass in
essentially all modes
– With half of available

Tevatron data,
systematics limited

– Most precise
measurement is in
l+jets mode
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Mass Measurement Techniques

 All techniques based on simple
kinematics
– Heavier the object, the more

energetic the daughters

 Variations in how one correlates
observed final state with mt
– Directly measure using 4-

momentum reconstruction
> Correct for resolution effects

– Employ matrix element
approach

> Use “transfer functions” for
detector resolution

– Look at subset of information
> Example, lepton PT

 Many complications
– Cannot reconstruct final state of 6

partons correctly
– Jet energy calibrations
– Background sources

 Example of how well one can do:
– Mass reconstruction in double-

tagged lepton+jet events
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Example LHC Analysis

 Select l+jets mode
– Require e(µ) with PT>25(20) GeV/c
– Require Missing ET>20 GeV
– 4 or more jets

> PT>40 GeV/c and |η|<2.4
– Require two b-tagged jet
– Use inclusive lepton trigger

> About 90% efficient on e/µ + jets

 Selection has 1.8% efficient
– Expect 16 pb of selected events
– Jet and b-tag cuts selected to reject

backgrounds

 Reconstruct final state
– Choose 4 highest PT jets
– Use a χ2 to choose best parton

assignments
– Use dijet mass to constrain jet energy

scale
> Perform a fit to extract mt
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LHC mt Precision

 Statistical accuracy
– At 0.2 GeV/c2, not limiting factor
– Resolution ~11-12 GeV/c2

 Systematic uncertainties dominate
– Mass depends linearly on jet energy

scale (JES) uncertainties
> Light quark jet JES constrained by

W mass to <1%
> B-jet JES comes from MC

modelling
– Tevatron estimates ~0.5%

– Model uncertainties are likely
larger in practice

> This will be area of intense
work

! 

m
t

=174.8 ± 0.2 GeV/c
2
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Many Other Mass Measurements

 Use all channels
– Dileptons
– Multijets

 More importantly, use different
techniques with different systematics

– Decay length of b
– Lepton PT distribution
– Multivariate techniques

> Neural networks
> Maximum likelihood

 Very quickly systematics-limited
– More statistics helps, but only if

systematics are tackled
> For example, colour reconnection

effects D. Wicke and P. Skands,
arXiv:0807.3248V1
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Top Quark Properties
 Many important properties, e.g.,

– Top quark charge
– Spin polarizations
– Flavour-changing neutral

currents (FCNC) in top decays
– t-tbar resonances

 In many cases, there are early
Tevatron results
– Suffer from low statistics
– “Top factory” mode allows one

to extend all of these in
significant ways

– Area where there will be much
new territory to cover

! 

d"

dM
tt 

# M
tt ( )

$6.1±0.9( )
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What We Know Already?

Compendium of CDF Results
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Top Quark Charge

 To directly measure the top quark
charge

– Need to show correlation
> W+b versus W-b

– One technique is to fully reconstruct t-
tbar events

 Employ “standard” selection
– Isolated e(µ)

> PT>20(25) GeV/c and |η|<2.5
– ≥4 jets

> PT>30 GeV/c and |η|<2.5
> At least two b-tagged jets

– ET
miss > 20 GeV

 Yield is about 2.5% of total production
– So about 21,000 events in 1 fb-1

 Associate W and b using kinematics
– Invariant l+b mass < 155 GeV/c2

> Maximizes ε(2P-1)2

– ε being efficiency
– P being “purity”

 Use method to determine b jet charge
– Track counting algorithm
– Semi-leptonic b decay
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Charge Results

 One intuitive algorithm
– Sum charges of all tracks in a jet

– Have to use MC to calibrate
> Results in Qb/Qmeas = 3.54±0.16
> Source of largest systematic

uncertainty

! 

Qbjet =
qi ji • pi
i

"
ji • pi

#

i
"

#

ji = b jet axis

qi, pi = track charge, vector

# = 0.5

 Results in top charge
distribution

 With 1 fb-1

– 20 σ measurement
– Relies on good

modelling of b jets!
! 

Q
t
= 0.67 ± 0.06 (stat) ± 0.08 (syst)

Background
Assumed
Symmetric!
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Top Quark Spin Effects

 Two sources of “spin” effects
– Top quark decay vertex
– Top quark spin correlations

 Top quark decay results in
polarized W boson

– Three possible polarization states
> “Longitudinal” (F0) is preferred

> SM:  F0=0.695, FL=0.304
> Look at lepton decay angle Ψ in

top quark rest frame
– Sensitive to physics of top quark

decay vertex

 Need to be careful about selection
– Standard selection creates some

bias in Ψ
– Have to correct with MC
– In 1 fb-1, expect to measure F0

> Statistical uncertainty ~0.04
> Systematic uncertainty ~0.02
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Top Quark Spin Correlations

 Top quark spin correlations at
production
– Reveal nature of the production

mechanism
> SM predicts s-channel gg

fusion will dominate
> At threshold, forces top quarks

to be anti-aligned
– At least in “beam-line” basis

 Strategy is to use top quark
decay products as spin analyzers
– Measure the correlations and

compare with expectations
– Use angle of decay lepton (θi)

with respect to parent top
> In t-tbar rest frame

 Have to measure analyzing
power with MC
– Can measure A with 1 fb-1

> Statistical uncertainty of ~0.2
> Systematics are less well-

understood (0.2-0.3?)
– Remains a challenge
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Top Pair Resonances

 Top quark pairs unique probe to
search for high mass objects
– Many BSM interactions couple

preferentially to t-tbar
– Expect to see effects at high Mtt

 Default approach: use standard
event selection
– Look for excess of events

 Works till Mtt ~ 0.75-1 TeV/c2

– Suffer from jet “merging”
> Efficiency for Z’→t-tbar

drops precipitously



39

High Mass Top Pairs

 Much recent work to
understand high mass top
system
– “top jets” become interesting
– But significant challenges

> Lose lepton ID
– QCD backgrounds explode

> Mass reconstruction
strategy changes

 Example is shown below
– Using R=0.4 cone jet

algorithm

L.G.Almeida et al., Phys.Rev.
D79, 074012,(2009)

 Challenge is understanding QCD
background
– Signal (PT>1 TeV/c) ~ 100 fb
– Background from QCD ~ 10 pb

 Looking at jet shape variables
– Very early days in strategy

development
– Clearly a high-statistics

measurement (>20 fb-1?)
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What We Don’t Know (But Should)

 Sense of “certainty” around
top quarks perhaps misplaced
– Don’t understand

experimental conditions well
> Effects of pileup will be a

challenge
> ISR/FSR models aren’t very

predictive
– Underlying physics is

uncertain
> What really causes mass?
> What are the top quark’s

couplings?
> How does the t-tbar system

get produced?

 Not going to get answers to
these until we have real data
– One example:  extra jet

production
> Look at dilepton events at

Tevatron
> See lots of extra jets!

CDF Public Note 9647 (2008)
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Summary

 Hope this has given you a flavour of top
quark physics at the LHC
– High statistics provides a unique

environment for top studies
> Trade off between analyzing power

and systematic effects
– Environment is still challenging

> Backgrounds are large
> High luminosity environment

 Can do much with restrictive selections
– However, somewhat “brute force”
– Analyses will require greater

sophistication than studies to date

 Data is now essential
–  Allow us to prepare for next decade of

top quark physics


